Chemische Reaktion am Katalysator in Echtzeit beobachtet

© Gregory Stewart at SLAC National Accelerator Laboratory

Eine internationale Gruppe von Wissenschaftlern hat am Freie-Elektronenlaser LCLS in Stanford erstmals in Echtzeit beobachtet, wie sich Kohlenmonoxid-Gas an der Oberfläche eines Katalysators genau verhält. Dabei wird ein Teil der CO-Moleküle offenbar dicht über der Oberfläche schwach gebunden. Damit können sich die Moleküle zwar nicht entfernen, bleiben aber parallel zur Oberfläche beweglich, so dass sie möglicherweise mit weiteren Reaktionspartnern reagieren können.Die Forscher konnten damit einen Teilschritt einer elementar wichtigen Reaktion aufklären.

Kohlenmonoxid ist ein geruchloses, giftiges Gas, das zum Beispiel bei der Verbrennung von Treibstoff entsteht. Erst ein geigneter Katalysator sorgt dafür, dass Kohlenmonoxid-Moleküle mit Luftsauerstoff zu ungiftigem Kohlendioxid-Gas weiterreagieren. Bislang war nur der grobe Ablauf dieses katalytischen Prozesses klar. „Katalysatoren werden bei so vielen industrierelevanten chemischen Reaktionen eingesetzt, dass es wirklich lohnt,  genauer hinzuschauen. Das haben wir hier am Beispiel eines elementaren Prozesses nun gemacht“, sagt Dr. Martin Beye vom HZB, der an der Studie beteiligt war.

Die Forscher haben untersucht, wie sich Kohlenmonoxid-Moleküle von einer Rutheniumoberfläche ablösen (desorbieren). Ruthenium ist ein Metall, das ähnlich wie Platin als Katalysator wirken kann. Mit ultrakurzen und hochintensiven Lichtblitzen am Freie-Elektronenlaser LCLS am SLAC in Stanford machten sie Momentaufnahmen, die Rückschlüsse darüber erlauben, wie sich die CO-Moleküle von der Katalysatoroberfläche lösen. Sie beobachteten, dass etwa ein Drittel der CO-Moleküle nicht direkt von der Oberfläche wegfliegt, sondern dicht über der Oberfläche in einer Art ”Zwischenzustand” gefangen wird. Diese schwache Bindung sorgt dafür, dass die Moleküle sich nicht wieder entfernen können, aber trotzdem parallel zur Oberfläche beweglich bleiben.Solche schwachgebunden, aktivierten Zustände könnten eine wichtige Rolle in katalytischen Prozesse spielen, vermuten die Forscher. Ihre Ergebnisse haben sie nun im Fachmagazin Science veröffentlicht.

Beteiligt an der internationalen Kollaboration waren Forscher aus dem Center for Free Electron Laser Science bei DESY und der Universität Hamburg, SLAC National Accelerator Laboratory, Helmholtz-Zentrum Berlin für Materialien und Energie, European XFEL, Universität Potsdam, Stockholm University, Technical University of Denmark, Stanford University, Fritz-Haber Institut. Hauptautor der Arbeit war Anders Nilsson, Stockholm University und SLAC.

Originalveröffentlichung:
“Real-Time Observation of Surface Bond Breaking with an X-ray Laser”; Martina Dell´Angela et al.; Science, 2013; DOI:10.1126/science.1231711


Presseinfo SLAC: Breakthrough Research Shows Chemical Reaction in Real Time


 

  • Link kopieren

Das könnte Sie auch interessieren

  • KI analysiert Dinosaurier-Fußabdrücke neu
    Science Highlight
    27.01.2026
    KI analysiert Dinosaurier-Fußabdrücke neu
    Seit Jahrzehnten rätseln Paläontolog*innen über geheimnisvolle dreizehige Dinosaurier-Fußabdrücke. Stammen sie von wilden Fleischfressern, sanften Pflanzenfressern oder sogar frühen Vögeln? Nun hat ein internationales Team künstliche Intelligenz eingesetzt, um dieses Problem anzugehen – und eine kostenlose App entwickelt, die es jeder und jedem ermöglicht, die Vergangenheit zu entschlüsseln.
  • Kompakter Elektronenbeschleuniger zur Aufbereitung von PFAS-belastetem Wasser
    Science Highlight
    19.01.2026
    Kompakter Elektronenbeschleuniger zur Aufbereitung von PFAS-belastetem Wasser
    So genannte Ewigkeitschemikalien oder PFAS-Verbindungen sind ein zunehmendes Umweltproblem. Ein innovativer Ansatz für die Aufbereitung von Wasser und Böden in PFAS-belasteten Gebieten kommt jetzt aus der Beschleunigerphysik: Hochenergetische Elektronen können PFAS-Moleküle durch Radiolyse in unschädliche Bestandteile zerlegen. Ein am HZB entwickelter Beschleuniger auf Basis eines SHF-Photoinjektors kann den dafür nötigen Elektronenstrahl liefern, zeigt nun eine Studie in PLOS One.
  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Nachricht
    05.12.2025
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Der Freundeskreis des HZB zeichnete auf dem 27. Nutzertreffen BESSY@HZB die Dissertation von Dr. Enggar Pramanto Wibowo (Friedrich-Alexander-Universität Erlangen-Nürnberg) aus.
    Darüber hinaus wurde der Europäische Innovationspreis Synchrotronstrahlung 2025 an Prof. Tim Salditt (Georg-August-Universität Göttingen) sowie an die Professoren Danny D. Jonigk und Maximilian Ackermann (beide, Universitätsklinikum der RWTH Aachen) verliehen.