Chemische Reaktion am Katalysator in Echtzeit beobachtet

© Gregory Stewart at SLAC National Accelerator Laboratory

Eine internationale Gruppe von Wissenschaftlern hat am Freie-Elektronenlaser LCLS in Stanford erstmals in Echtzeit beobachtet, wie sich Kohlenmonoxid-Gas an der Oberfläche eines Katalysators genau verhält. Dabei wird ein Teil der CO-Moleküle offenbar dicht über der Oberfläche schwach gebunden. Damit können sich die Moleküle zwar nicht entfernen, bleiben aber parallel zur Oberfläche beweglich, so dass sie möglicherweise mit weiteren Reaktionspartnern reagieren können.Die Forscher konnten damit einen Teilschritt einer elementar wichtigen Reaktion aufklären.

Kohlenmonoxid ist ein geruchloses, giftiges Gas, das zum Beispiel bei der Verbrennung von Treibstoff entsteht. Erst ein geigneter Katalysator sorgt dafür, dass Kohlenmonoxid-Moleküle mit Luftsauerstoff zu ungiftigem Kohlendioxid-Gas weiterreagieren. Bislang war nur der grobe Ablauf dieses katalytischen Prozesses klar. „Katalysatoren werden bei so vielen industrierelevanten chemischen Reaktionen eingesetzt, dass es wirklich lohnt,  genauer hinzuschauen. Das haben wir hier am Beispiel eines elementaren Prozesses nun gemacht“, sagt Dr. Martin Beye vom HZB, der an der Studie beteiligt war.

Die Forscher haben untersucht, wie sich Kohlenmonoxid-Moleküle von einer Rutheniumoberfläche ablösen (desorbieren). Ruthenium ist ein Metall, das ähnlich wie Platin als Katalysator wirken kann. Mit ultrakurzen und hochintensiven Lichtblitzen am Freie-Elektronenlaser LCLS am SLAC in Stanford machten sie Momentaufnahmen, die Rückschlüsse darüber erlauben, wie sich die CO-Moleküle von der Katalysatoroberfläche lösen. Sie beobachteten, dass etwa ein Drittel der CO-Moleküle nicht direkt von der Oberfläche wegfliegt, sondern dicht über der Oberfläche in einer Art ”Zwischenzustand” gefangen wird. Diese schwache Bindung sorgt dafür, dass die Moleküle sich nicht wieder entfernen können, aber trotzdem parallel zur Oberfläche beweglich bleiben.Solche schwachgebunden, aktivierten Zustände könnten eine wichtige Rolle in katalytischen Prozesse spielen, vermuten die Forscher. Ihre Ergebnisse haben sie nun im Fachmagazin Science veröffentlicht.

Beteiligt an der internationalen Kollaboration waren Forscher aus dem Center for Free Electron Laser Science bei DESY und der Universität Hamburg, SLAC National Accelerator Laboratory, Helmholtz-Zentrum Berlin für Materialien und Energie, European XFEL, Universität Potsdam, Stockholm University, Technical University of Denmark, Stanford University, Fritz-Haber Institut. Hauptautor der Arbeit war Anders Nilsson, Stockholm University und SLAC.

Originalveröffentlichung:
“Real-Time Observation of Surface Bond Breaking with an X-ray Laser”; Martina Dell´Angela et al.; Science, 2013; DOI:10.1126/science.1231711


Presseinfo SLAC: Breakthrough Research Shows Chemical Reaction in Real Time


 

  • Link kopieren

Das könnte Sie auch interessieren

  • Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Science Highlight
    25.11.2025
    Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Eisen-Stickstoff-Kohlenstoff-Katalysatoren haben das Potenzial, teure Platinkatalysatoren in Brennstoffzellen zu ersetzen. Dies zeigt eine Studie aus Helmholtz-Zentrum Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universitäten in Tartu und Tallinn, Estland. An BESSY II beobachtete das Team, wie sich komplexe Mikrostrukturen in den Proben bilden. Anschließend analysierten sie, welche Strukturparameter für die Förderung der bevorzugten elektrochemischen Reaktionen besonders wichtig waren. Der Rohstoff für solche Katalysatoren ist gut zersetzter Torf.
  • Helmholtz-Nachwuchsgruppe zu Magnonen
    Nachricht
    24.11.2025
    Helmholtz-Nachwuchsgruppe zu Magnonen
    Dr. Hebatalla Elnaggar baut am HZB eine neue Helmholtz-Nachwuchsgruppe auf. An BESSY II will die Materialforscherin sogenannte Magnonen in magnetischen Perowskit-Dünnschichten untersuchen. Sie hat sich zum Ziel gesetzt, mit ihrer Forschung Grundlagen für eine zukünftige Terahertz-Magnon-Technologie zu legen: Magnonische Bauelemente im Terahertz-Bereich könnten Daten mit einem Bruchteil der Energie verarbeiten, die moderne Halbleiterbauelemente benötigen, und das mit bis zu tausendfacher Geschwindigkeit.

    Dr. Hebatalla Elnaggar will an BESSY II magnetische Perowskit-Dünnschichten untersuchen und damit die Grundlagen für eine künftige Magnonen-Technologie schaffen.

  • Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe.