Es gibt wieder Sägezahngitter für Photonenquellen: Durchbruch am Helmholtz-Zentrum Berlin

Am HZB produziertes Sägezahngitter. Foto: HZB

Am HZB produziertes Sägezahngitter. Foto: HZB

In diesem Gerät entstehen die Sägezahn-Strukturen. Ein Diamant ritzt dabei in die mit Gold beschichteten Silizium-Substrate kleinste Rillen. Foto: HZB

In diesem Gerät entstehen die Sägezahn-Strukturen. Ein Diamant ritzt dabei in die mit Gold beschichteten Silizium-Substrate kleinste Rillen. Foto: HZB

Dem Technologiezentrum für hochpräzise optische Gitter am Helmholtz-Zentrum Berlin ist ein Durchbruch bei der Herstellung von Sägezahngittern gelungen. Sie kommen in Photonenquellen zum Einsatz, um das Licht zu beugen und die für die Experimente benötigte Wellenlänge herauszufiltern. Nach zweieinhalbjähriger Arbeit haben die Entwickler nun erstmalig Sägezahngitter in höchster Präzision hergestellt, die den Ansprüchen an das wissenschaftliche Experimentieren genügen. Diese Sägezahngitter (auch geblaztes Gitter genannt) wurde kürzlich erfolgreich am Elektronenspeicherring BESSY II getestet. Sie verhielten sich dabei so, wie Forscher theoretisch vorausgesagt hatten. Das Technologiezentrum am HZB ist weltweit der einzige Hersteller von hocheffizienten Sägezahngittern für den Einsatz an Photonenquellen. Gefördert wird das Projekt von der Europäischen Union durch den EFRE-Fond.

Ein Sägezahngitter besteht aus einem Silizium-Substrat, auf das eine sehr dünne Schicht Gold aufgedampft wird. Damit das Licht am Gitter gebeugt werden kann, werden kleine Rillen mit einem Diamanten eingeritzt. Es entsteht dadurch eine Struktur, die – unter dem Mikroskop betrachtet – lauter kleinen Sägezähnen ähnelt. In einem solchen Gitter werden 600 solcher Zähne je Millimeter eingeritzt. Bei diesem Prozess dürfen die Umgebungstemperaturen maximal um 0.02 Grad Kelvin schwanken. Damit die Gitter möglichst viel Licht der entsprechenden Wellenlänge durchlassen, müssen die Sägezähne besonders flach sein. Das wird erreicht, indem die Goldschicht der fertig geritzten Gitter in einer lonenätzanlage behandelt wird. Dadurch wird die Neigung der Sägezähne flacher. Den Entwicklern vom HZB ist es jetzt gelungen, den Winkel auf nur 2 Grad zu verkleinern.

„Für die Herstellung dieser Sägezahngitter mussten wir uns sehr viele technologische Prozesse aneignen und sicher beherrschen lernen", sagt Dr. Friedmar Senf, der mit in dem EFRE-Projekt am HZB arbeitet. Da es weltweit keine anderen Arbeitsgruppen auf diesem Gebiet gibt, konnten sie nicht auf vorhandene Erfahrungen zurückgreifen. Der frühere Hersteller, die Firma C. ZEISS, hatte die Fertigung der hochpräzisen Gitter 2008 aufgegeben. Seitdem wurden weltweit keine neuen Gitter für Photonenquellen mehr produziert. Mit dem jüngsten Erfolg hoffen die Forscher, diese Lücke bald schließen zu können. „Die Nachfrage nach Gittern ist sehr groß – und unsere Liste mit Bestellungen lang", so der Physiker Friedmar Senf.

Das Team des Technologiezentrums konnte erst Anfang 2013 mit der eigentlichen Entwicklungsarbeit beginnen. In den beiden Jahren zuvor wurden die Laboranlagen am HZB aufgebaut und die von ZEISS übernommen Geräte und Maschinen generalüberholt. „Bis unsere Gitterteilmaschine tatsächlich für diese extrem präzisen Arbeiten wieder fit war, ist viel Zeit vergangen. Unter anderem ist die Elektronik komplett erneuert wurden. Umso mehr freuen wir uns, dass es uns gelungen ist, in relativ kurzer Zeit funktionierende Gitter herzustellen", so Friedmar Senf. Unterstützt und begleitet wird die Gitteraktivität durch die Firma DIOS aus Bad Münstereifel.

Das Team entwickelt auch weitere innovative Gitter, unter anderem so genannte Toroidgitter auf gekrümmten Substratoberflächen, Variable- Liniendichte-Gitter und reflektierende Zonenplatten, die an Freien Elektronen Lasern zum Einsatz kommen sollen.

Das Technologiezentrum für hochpräzise optische Gitter wird von Bernd Loechel, Friedmar Senf und Alexei Erko geleitet. Es ist am Institut für Nanometeroptik und Technologie angesiedelt. Dieses bringt jahrelange Erfahrung bei der Gestaltung, Herstellung und Metrologie von hochwertigen Optiken mit. Für die Attraktivität des Elektronenspeicherringes BESSY II ist es wichtig, führend bei der Entwicklung von Röntgenoptiken zu sein.

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Science Highlight
    25.11.2025
    Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Eisen-Stickstoff-Kohlenstoff-Katalysatoren haben das Potenzial, teure Platinkatalysatoren in Brennstoffzellen zu ersetzen. Dies zeigt eine Studie aus Helmholtz-Zentrum Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universitäten in Tartu und Tallinn, Estland. An BESSY II beobachtete das Team, wie sich komplexe Mikrostrukturen in den Proben bilden. Anschließend analysierten sie, welche Strukturparameter für die Förderung der bevorzugten elektrochemischen Reaktionen besonders wichtig waren. Der Rohstoff für solche Katalysatoren ist gut zersetzter Torf.
  • Helmholtz-Nachwuchsgruppe zu Magnonen
    Nachricht
    24.11.2025
    Helmholtz-Nachwuchsgruppe zu Magnonen
    Dr. Hebatalla Elnaggar baut am HZB eine neue Helmholtz-Nachwuchsgruppe auf. An BESSY II will die Materialforscherin sogenannte Magnonen in magnetischen Perowskit-Dünnschichten untersuchen. Sie hat sich zum Ziel gesetzt, mit ihrer Forschung Grundlagen für eine zukünftige Terahertz-Magnon-Technologie zu legen: Magnonische Bauelemente im Terahertz-Bereich könnten Daten mit einem Bruchteil der Energie verarbeiten, die moderne Halbleiterbauelemente benötigen, und das mit bis zu tausendfacher Geschwindigkeit.

    Dr. Hebatalla Elnaggar will an BESSY II magnetische Perowskit-Dünnschichten untersuchen und damit die Grundlagen für eine künftige Magnonen-Technologie schaffen.

  • Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe.