Die Bauarbeiten beginnen: BESSY II erhält Anbau für neuen Laborkomplex

Mit einem feierlichen Spatenstich beginnen am Montag, dem 5. August 2013 um 16:00 die Bauarbeiten für das neue Forschungslabor EMIL an BESSY II: Das „Energy Materials In-Situ Laboratory Berlin“, kurz EMIL, wird als hochmodernes  Präparations- und Analyselabor für die Solarenergie- und Katalyseforschung aufgebaut. Das Gemeinschaftsprojekt vom HZB und der Max-Planck-Gesellschaft soll eine einzigartige Infrastruktur bieten, um interdisziplinär und industriekompatibel neue Materialien und Technologien zu entwickeln, die die Energiewende ermöglichen. Dazu zählen neue Materialsysteme für Solarmodule und Speicherlösungen, für die neuartige Katalysatoren entwickelt werden müssen.

Mit einem feierlichen Spatenstich beginnen am Montag, dem 5. August 2013 um 16:00 die Bauarbeiten für das neue Forschungslabor EMIL an BESSY II: Das „Energy Materials In-Situ Laboratory Berlin“, kurz EMIL, wird als hochmodernes  Präparations- und Analyselabor für die Solarenergie- und Katalyseforschung aufgebaut. Das Gemeinschaftsprojekt vom HZB und der Max-Planck-Gesellschaft soll eine einzigartige Infrastruktur bieten, um interdisziplinär und industriekompatibel neue Materialien und Technologien zu entwickeln, die die Energiewende ermöglichen. Dazu zählen neue Materialsysteme für Solarmodule und Speicherlösungen, für die neuartige Katalysatoren entwickelt werden müssen.

Das Gebäude für EMIL wird direkt an BESSY II angebaut, dabei sind zwei Laborkomplexe mit unterschiedlicher wissenschaftlicher Ausrichtung geplant: Das „SISSY“ (Solar Energy Material In-situ Spectroscopy at the Synchrotron) richtet das HZB für die photovoltaische Materialforschung ein. Beim Aufbau des „CAT-Labors“ (Catalysis Research for Sustainable Energy Supply) ist das Fritz-Haber-Institut der Max-Planck-Gesellschaft federführend. Dort werden Wissenschaftler der Max-Planck-Gesellschaft (photo-)katalytische Prozesse erforschen. An EMIL können Wissenschaftlerinnen und Wissenschaftler erstmals neuartige Materialsysteme auch während der Präparation „in situ“ mit dem Synchrotronlicht von BESSY II untersuchen und die dabei ablaufenden Prozesse aufklären. Damit können Forscherinnen und Forscher an EMIL die nächste Generation solarenergie-wandelnder Bauteile entwickeln. Bis Ende 2014 soll das Gebäude fertig gestellt werden.

„Dass die Bauarbeiten nach nur sieben Monaten Vorbereitungszeit schon starten, ist ein echter Rekord und belegt das große Engagement der beteiligten Mitarbeiter“, sagt Prof. Anke-Rita Kaysser-Pyzalla, wissenschaftliche Geschäftsführerin des HZB. So hat der Projektkoordinator der Bauabteilung des HZB, Reiner Keilholz, mit großer Umsicht alle Hürden aus dem Weg geräumt und sowohl die notwendigen Genehmigungen eingeholt als auch die Architekten bei ihrer Planung eng begleitet.

Zum Spatenstich wird Anke Kaysser-Pyzalla eine kurze Begrüßungsrede halten. Danach berichten der Projektleiter Prof. Klaus Lips und der leitende Architekt Markus Hammes über den Stand des Projekts. Anschließend kann auf den Start der Bauarbeiten angestoßen werden.


Ort: BESSY II, Albert-Einstein-Straße 15, 12489 Berlin (vor BESSY II in Richtung Magnusstraße)
Zeit: Montag, 5. August 2013, 16:00

Mehr Informationen:
http://www.helmholtz-berlin.de/projects/emil/

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.
  • Perowskit-Solarzellen aus Deutschland machen Chinas PV-Technik Konkurrenz - Technologietransfer-Preis des HZB 2025
    Nachricht
    15.10.2025
    Perowskit-Solarzellen aus Deutschland machen Chinas PV-Technik Konkurrenz - Technologietransfer-Preis des HZB 2025
    Photovoltaik ist die führende Technologie bei der Umstellung auf saubere Energie. Doch die traditionelle Solartechnologie auf Siliziumbasis hat ihre Effizienzgrenze erreicht. Daher hat ein HZB-Team eine auf Perowskit basierende Mehrfachzellenarchitektur entwickelt. Dafür erhielten Kevin J. Prince und Siddhartha Garud am 13. Oktober 2025 den mit 5.000 Euro dotierten Technologie-Transferpreis des Helmholtz-Zentrum Berlin (HZB).