Resumption of full scientific operation at BESSY II delayed

the 7-Tesla Multipole Wiggler: after one year working on it, the wiggler came back from Novosibirsk as planned but had to be removed from the storage ring again. The reason for highly elevated operating temperatures are investigated.

the 7-Tesla Multipole Wiggler: after one year working on it, the wiggler came back from Novosibirsk as planned but had to be removed from the storage ring again. The reason for highly elevated operating temperatures are investigated.

While the lengthy summer shutdown with its comprehensive updating and maintenance work has been completed as planned, there have been some unforeseeable disruptions that will delay the resumption of regular Top-Up operations at present. The scientific operating time for users which was unavailable in October will be made up at the beginning of 2014.

Initial operation of the storage ring has been successfully commenced; however the electron source of the Linac has displayed unexpected arcing voltages. Storage ring injection has therefore been transferred from the Linac over to the Microtron. The repair work is progressing with the goal of being able to use the Linac again as soon as possible.

As long as injection is being carried out with the help of the Microtron, comprehensive operation in Top-Up mode is not possible, unfortunately, while insertion of the usual individual pulses into the gaps of multi-pulses in hybrid mode is not available.

Due to the problems with the Linac, no external scientific work could take place during the second week of October. The down-time will made up through an additional operating week at the beginning of 2014.

External scientific work with BESSY II resumed on 15 October: during the day, the storage ring will only be operated in restricted decay mode, however, while at night in reduced Top-Up mode. This assures that scientific use is available for the majority of BESSY II users.

Moreover, the 7-Tesla Multipole Wiggler, which supplies the EDDI, MAGS, and ASAXS beamlines with hard X-ray radiation, displayed highly elevated operating temperatures and had to be removed from the storage ring again. Repairs are in progress, though the Wiggler will probably only be able to come online again in December, however.

This means that external scientific work with the three beamlines mentioned above cannot take place probably until the end of the year. 
All members of the BESSY II team keenly regret these unforeseen restrictions to our users as well as our own in-house colleagues. They request your understanding and are working hard to restore comprehensive external operation again as quickly as possible.

Current information about operational status of BESSY II can be viewed on the informational systems of BESSY II in the internet at http://infosystem.bessy.de/

tg

  • Copy link

You might also be interested in

  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.
  • Peat as a sustainable precursor for fuel cell catalyst materials
    Science Highlight
    25.11.2025
    Peat as a sustainable precursor for fuel cell catalyst materials
    Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.
  • Helmholtz Investigator Group on magnons
    News
    24.11.2025
    Helmholtz Investigator Group on magnons
    Dr Hebatalla Elnaggar is setting up a new Helmholtz Investigator Group at HZB. At BESSY II, the materials scientist will investigate so-called magnons in magnetic perovskite thin films. The aim is to lay the foundations for future terahertz magnon technology: magnonic devices operating in the terahertz range could process data using a fraction of the energy required by the most advanced semiconductor devices, and at speeds up to a thousand times faster.