Resumption of full scientific operation at BESSY II delayed

the 7-Tesla Multipole Wiggler: after one year working on it, the wiggler came back from Novosibirsk as planned but had to be removed from the storage ring again. The reason for highly elevated operating temperatures are investigated.

the 7-Tesla Multipole Wiggler: after one year working on it, the wiggler came back from Novosibirsk as planned but had to be removed from the storage ring again. The reason for highly elevated operating temperatures are investigated.

While the lengthy summer shutdown with its comprehensive updating and maintenance work has been completed as planned, there have been some unforeseeable disruptions that will delay the resumption of regular Top-Up operations at present. The scientific operating time for users which was unavailable in October will be made up at the beginning of 2014.

Initial operation of the storage ring has been successfully commenced; however the electron source of the Linac has displayed unexpected arcing voltages. Storage ring injection has therefore been transferred from the Linac over to the Microtron. The repair work is progressing with the goal of being able to use the Linac again as soon as possible.

As long as injection is being carried out with the help of the Microtron, comprehensive operation in Top-Up mode is not possible, unfortunately, while insertion of the usual individual pulses into the gaps of multi-pulses in hybrid mode is not available.

Due to the problems with the Linac, no external scientific work could take place during the second week of October. The down-time will made up through an additional operating week at the beginning of 2014.

External scientific work with BESSY II resumed on 15 October: during the day, the storage ring will only be operated in restricted decay mode, however, while at night in reduced Top-Up mode. This assures that scientific use is available for the majority of BESSY II users.

Moreover, the 7-Tesla Multipole Wiggler, which supplies the EDDI, MAGS, and ASAXS beamlines with hard X-ray radiation, displayed highly elevated operating temperatures and had to be removed from the storage ring again. Repairs are in progress, though the Wiggler will probably only be able to come online again in December, however.

This means that external scientific work with the three beamlines mentioned above cannot take place probably until the end of the year. 
All members of the BESSY II team keenly regret these unforeseen restrictions to our users as well as our own in-house colleagues. They request your understanding and are working hard to restore comprehensive external operation again as quickly as possible.

Current information about operational status of BESSY II can be viewed on the informational systems of BESSY II in the internet at http://infosystem.bessy.de/

tg

  • Copy link

You might also be interested in

  • Compact electron accelerator for treating PFAS-contaminated water
    Science Highlight
    19.01.2026
    Compact electron accelerator for treating PFAS-contaminated water
    So-called forever chemicals or PFAS compounds are a growing environmental problem. An innovative approach to treating PFAS-contaminated water and soil now comes from accelerator physics: high-energy electrons can break down PFAS molecules into harmless components through a process called radiolysis. A recent study published in PLOS One shows that an accelerator developed at HZB, based on a SRF photoinjector, can provide the necessary electron beam.
  • Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    News
    05.12.2025
    Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    At the 27th BESSY@HZB User Meeting, the Friends of HZB honoured the dissertation of Dr Enggar Pramanto Wibowo (Friedrich-Alexander University Erlangen-Nuremberg). The Innovation Award on Synchrotron Radiation 2025 went to Prof. Tim Salditt (Georg-August-University Göttingen) and Professors Danny D. Jonigk and Maximilian Ackermann (both, University Hospital of RWTH Aachen University). 
  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.