Resumption of full scientific operation at BESSY II delayed

the 7-Tesla Multipole Wiggler: after one year working on it, the wiggler came back from Novosibirsk as planned but had to be removed from the storage ring again. The reason for highly elevated operating temperatures are investigated.

the 7-Tesla Multipole Wiggler: after one year working on it, the wiggler came back from Novosibirsk as planned but had to be removed from the storage ring again. The reason for highly elevated operating temperatures are investigated.

While the lengthy summer shutdown with its comprehensive updating and maintenance work has been completed as planned, there have been some unforeseeable disruptions that will delay the resumption of regular Top-Up operations at present. The scientific operating time for users which was unavailable in October will be made up at the beginning of 2014.

Initial operation of the storage ring has been successfully commenced; however the electron source of the Linac has displayed unexpected arcing voltages. Storage ring injection has therefore been transferred from the Linac over to the Microtron. The repair work is progressing with the goal of being able to use the Linac again as soon as possible.

As long as injection is being carried out with the help of the Microtron, comprehensive operation in Top-Up mode is not possible, unfortunately, while insertion of the usual individual pulses into the gaps of multi-pulses in hybrid mode is not available.

Due to the problems with the Linac, no external scientific work could take place during the second week of October. The down-time will made up through an additional operating week at the beginning of 2014.

External scientific work with BESSY II resumed on 15 October: during the day, the storage ring will only be operated in restricted decay mode, however, while at night in reduced Top-Up mode. This assures that scientific use is available for the majority of BESSY II users.

Moreover, the 7-Tesla Multipole Wiggler, which supplies the EDDI, MAGS, and ASAXS beamlines with hard X-ray radiation, displayed highly elevated operating temperatures and had to be removed from the storage ring again. Repairs are in progress, though the Wiggler will probably only be able to come online again in December, however.

This means that external scientific work with the three beamlines mentioned above cannot take place probably until the end of the year. 
All members of the BESSY II team keenly regret these unforeseen restrictions to our users as well as our own in-house colleagues. They request your understanding and are working hard to restore comprehensive external operation again as quickly as possible.

Current information about operational status of BESSY II can be viewed on the informational systems of BESSY II in the internet at http://infosystem.bessy.de/

tg

  • Copy link

You might also be interested in

  • Perovskites: Hybrid materials as highly sensitive X-ray detectors
    Science Highlight
    08.05.2025
    Perovskites: Hybrid materials as highly sensitive X-ray detectors
    New bismuth-based organic-inorganic hybrid materials show exceptional sensitivity and long-term stability as X-ray detectors, significantly more sensitive than commercial X-ray detectors. In addition, these materials can be produced without solvents by ball milling, a mechanochemical synthesis process that is environmentally friendly and scalable. More sensitive detectors would allow for a reduction in the radiation exposure during X-ray examinations.
  • Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    News
    07.05.2025
    Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    The Federal Institute for Materials Research and Testing (BAM), the Helmholtz-Zentrum Berlin (HZB), and Humboldt University of Berlin (HU Berlin) have signed a memorandum of understanding (MoU) to establish the Berlin Battery Lab. The lab will pool the expertise of the three institutions to advance the development of sustainable battery technologies. The joint research infrastructure will also be open to industry for pioneering projects in this field.
  • BESSY II: Insight into ultrafast spin processes with femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Insight into ultrafast spin processes with femtoslicing
    An international team has succeeded at BESSY II for the first time to elucidate how ultrafast spin-polarised current pulses can be characterised by measuring the ultrafast demagnetisation in a magnetic layer system within the first hundreds of femtoseconds. The findings are useful for the development of spintronic devices that enable faster and more energy-efficient information processing and storage. The collaboration involved teams from the University of Strasbourg, HZB, Uppsala University and several other universities.