New Materials for Photovoltaics: HZB starting its first own Graduate School

Prof. Susann Schorr with participants of Graduate School MatSEC

Prof. Susann Schorr with participants of Graduate School MatSEC

Well-structured Ph.D. program

New HZB Graduate School: Ph.D. candidates to study materials for energy conversion

Yesterday’s workshop was the official starting signal for the opening of the Helmholtz Center Berlin’s new Materials for Solar Energy Conversion (MatSEC) Graduate School. MatSEC is the first HZB graduate training program for the Center’s doctoral students. The school is located at the Dahlem Research School (DRS) of the Freie Universität Berlin (FU Berlin). Up to ten Ph.D. students will be able to take advantage of MatSEC’s course offerings while working towards their degree.

The MatSEC graduate school’s focus is on the study of kesterites, a new class of materials used in photovoltaics. Kesterites are considered highly promising absorption film candidates for thin-film photovoltaics and could potentially double as photoelectrodes for splitting water using solar energy. The ultimate goal is to arrive at a comprehensive understanding of the relationship between this connecting semiconductor’s internal structure and its properties. This knowledge could aid researchers in developing customized materials for use in more cost-effective and efficient solar cells.

Prof. Dr. Susan Schorr, head of the Department for Crystallography at the HZB and a professor at FU Berlin, is the new graduate school’s spokesperson.  Research groups at FU Berlin, the Technical University of Berlin, the Humboldt University of Berlin, and the Brandenburg University of Technology in Cottbus are all partners of the new graduate school. “It is precisely in this interdisciplinary research structure that MatSEC’s strengths lie,” says Schorr.

Doctoral students attend lectures that are relevant to their research at the different participating university campuses. Workshops, study abroad programs, and course offerings at the Dahlem Research School complement the program. “We’re thrilled that we’re able to offer seven additional spots for students as part of our graduate program,” says Gabriele Lampert, Ph.D. coordinator at the HZB.

HS

  • Copy link

You might also be interested in

  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.

  • Joint Kyiv Energy and Climate Lab goes live
    News
    28.11.2025
    Joint Kyiv Energy and Climate Lab goes live
    Helmholtz-Zentrum Berlin and the National University of Kyiv-Mohyla Academy established on 27 November a Joint Energy and Climate Lab.
  • How carbonates influence CO2-to-fuel conversion
    Science Highlight
    25.11.2025
    How carbonates influence CO2-to-fuel conversion
    Researchers from the Helmholtz Zentrum Berlin (HZB) and the Fritz Haber Institute of the Max Planck Society (FHI) have uncovered how carbonate molecules affect the conversion of CO2 into valuable fuels on gold electrocatalysts. Their findings reveal key molecular mechanisms in CO2 electrocatalysis and hydrogen evolution, pointing to new strategies for improving energy efficiency and reaction selectivity.