Blocking the active site of thiolase

A key feature of the active site of the trypanosomal thiolase is the HDCF-loop (HIS-ASP-CYS-PHE), visualised in light blue.

A key feature of the active site of the trypanosomal thiolase is the HDCF-loop (HIS-ASP-CYS-PHE), visualised in light blue. © University of Oulu

Scientists at the University of Oulu, Finland, and at the HZB break new ground for drug discovery research in the fight against sleeping sickness

Scientists at the University of Oulu, Finland, and at the Helmholtz Center Berlin (HZB) have shown the way to new directions in drug development against African sleeping sickness and other tropical parasitic infections. This was based on the structural analysis of the enzyme thiolase, which plays a central role in lipid metabolism in the parasite that causes sleeping sickness. The researchers examined the biomolecule’s structure at the MX beamline of electron storage ring, BESSY II, at the HZB. (Biochemical J. 2013, DOI: 10.1042/BJ20130669)

Sleeping sicknesses – african trypanosomiasis, kala-azar, indian leishmaniasis – are infections caused by tropical parasites. Millions get sick from them each year and thousands end up dying. Anti-parasitic drugs are expensive and often have a host of unwanted side effects. In decades, there have been no new effective therapies. Reason enough for the World Health Organization (WHO) to consider research, which can lead to the development of new anti-parasitic drugs, a top priority.

Now, Prof. Rik Wierenga and his team at Oulu University have paved the way for this type of research by shedding light on the structure of the enzyme thiolase. Thiolase figures prominently in parasitic lipid metabolism. According to Wierenga, “key is knowing the geometry of the enzyme’s active site. This is the place where lipids that play a central role in parasitic metabolism attach and where chemical reactions that convert lipids into other substances take place.” Which is why it’s important to investigate the active site’s structure and function: “It enables us to develop lipid-like substances that firmly attach to the active site and block it.” The molecules that are involved represent the ideal starting points for new drug development.
Studies at BESSY of the enzyme thiolase have yielded a highly detailed image of thiolase’s active site. “We now have a much clearer idea of thiolase’s role in all this,” says Wierenga. “It would appear that the enzyme catalyzes the first step in the sterol biosynthesis pathway, which is important in a number of parasites.”

“The measurements of crystalline thiolase proteins we obtained at our MX beamline has helped to unravel the active site’s geometry,” says HZB’s own Dr. Manfred Weiss. One particular region of the protein called the HDCF loop turns out to be key. The structure, which lies deep within thiolase’s interior, was previously unknown. “Understanding the HDCF loop is the ideal starting point for the development of new anti-parasitic drugs,” adds Wierenga.

Original publication:
Harijan, R.K., Kiema, T.R., Karjalainen, M.P., Janardan, N., Murthy, M.R., Weiss. M.S., Michels, P.A., Wierenga, R.K. (2013) Crystal structures of SCP2-thiolases of Trypanosomatidae, human pathogens causing widespread tropical diseases: the importance for catalysis of the cysteine of the unique HDCF loop. Biochem J., 455, 119-130.

HS

  • Copy link

You might also be interested in

  • Electrocatalysis with dual functionality – an overview
    Science Highlight
    31.10.2025
    Electrocatalysis with dual functionality – an overview
    Hybrid electrocatalysts can produce green hydrogen, for example, and valuable organic compounds simultaneously. This promises economically viable applications. However, the complex catalytic reactions involved in producing organic compounds are not yet fully understood. Modern X-ray methods at synchrotron sources such as BESSY II, enable catalyst materials and the reactions occurring on their surfaces to be analysed in real time, in situ and under real operating conditions. This provides insights that can be used for targeted optimisation. A team has now published an overview of the current state of knowledge in Nature Reviews Chemistry.
  • BESSY II: Phosphorus chains – a 1D material with 1D electronic properties
    Science Highlight
    21.10.2025
    BESSY II: Phosphorus chains – a 1D material with 1D electronic properties
    For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties in phosphorus. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.
  • Did marine life in the palaeocene use a compass?
    Science Highlight
    20.10.2025
    Did marine life in the palaeocene use a compass?
    Some ancient marine organisms produced mysterious magnetic particles of unusually large size, which can now be found as fossils in marine sediments. An international team has succeeded in mapping the magnetic domains on one of such ‘giant magnetofossils’ using a sophisticated method at the Diamond X-ray source. Their analysis shows that these particles could have allowed these organisms to sense tiny variations in both the direction and intensity of the Earth’s magnetic field, enabling them to geolocate themselves and navigate across the ocean. The method offers a powerful tool for magnetically testing whether putative biological iron oxide particles in Mars samples have a biogenic origin.