Warum “altern” Lithium-Ionen Akkus?

Ursprünglich besitzt das Kathodenmaterial eine ABCABC-Struktur (links). Im Lauf mehrerer Ladezyklen wird diese Ordnung "abgebaut" zu  ABBCCA (rechts).

Ursprünglich besitzt das Kathodenmaterial eine ABCABC-Struktur (links). Im Lauf mehrerer Ladezyklen wird diese Ordnung "abgebaut" zu  ABBCCA (rechts).

Selbst die besten Akkus werden mit der Zeit schlechter. Warum dies so ist, hat nun erstmals ein HZB-Team direkt an BESSY II und DORIS beobachten können. Sie untersuchten dafür ein Kathodenmaterial, für Lithium-Ionen-Akkus der nächsten Generation. Dabei zeigte sich, dass die elektrochemischen Prozesse beim Laden zu Scherungen in den Sauerstofflagen führen. Diese Scherungen werden beim Entladen nicht komplett rückgängig gemacht, so dass die ursprünglich regelmäßige, kristalline Struktur im Lauf mehrerer Zyklen immer ungeordneter wird. Dies ist ein Hauptgrund dafür, dass Lithium-Ionen-Akkus im Lauf der Zeit „altern“.

“Wieder aufladbare Lithium-Ionen-Akkus liefern Strom für Handys, Laptops, Kameras und werden allmählich auch für die Automobil-Industrie interessant”, sagt Dr. Jatinkumar Rana vom HZB. Der junge Wissenschaftler und seine Kollegen haben mit der Gruppe um Prof. Dr. Martin Winter von der Universität Münster Lithium-reiche Kathodenmaterialien untersucht, die durch die Summenformel (x)Li2MnO3*(1-x)LiMO2 beschrieben werden. Dabei steht „M“ für ein Übergangsmetall wie Mangan, Chrom oder Eisen. Solche Kathodenmaterialien gelten als beste Kandidaten für die nächste Generation von Lithium-Ionen-Akkus. “Sie besitzen im Vergleich zu kommerziellen Kathodenmaterialien eine doppelt so hohe Kapazität und eine hohe Ladegeschwindigkeit. Außerdem enthalten sie weniger seltene und toxische Elemente wie Nickel oder Kobalt, was sie billiger und umweltfreundlicher macht“, sagt Rana.

Doch zu diesen positiven Eigenschaften kommen leider auch unerwünschte Effekte wie das Nachlassen der Batteriespannung im Lauf mehrerer Zyklen, so wie bei herkömmlichen Akkus auch. Außerdem ist nicht ausreichend bekannt, welche Rolle die Li2MnO3-Komponente bei den elektrochemischen Prozessen überhaupt spielt. “Um diese Fragen zu klären, haben wir untersucht, wie die elektrochemischen Prozesse beim Laden und Entladen die atomare Struktur der Li2MnO3-Komponente verändern”, berichtet Rana.

Die Wissenschaftler untersuchten Proben von Li2MnO3 während des ersten und des 33. Ladezyklus mit Röntgen-Absorptions-Spektroskopie (XAS) an den Synchrotronquellen BESSY II am HZB und DORIS am DESY. Dabei konnten sie beobachten, was beim Aufladen passierte: Beim ersten Aufladen wanderten Sauerstoffatome aus der Probe ab, außerdem führte bei jedem Ladeprozess der Austausch von Lithium- und Wasserstoff-Ionen zu einer Scherung in den Sauerstoff-Schichten; Damit konnten sie erstmals experimentell eine Vermutung bestätigen, die in Fachkreisen bereits länger diskutiert wurde: Das Material verliert mit der Zeit die ursprüngliche kristalline Struktur und die elektrochemische Leistung der Batterie wird schlechter.

Die Ergebnisse liefern nun jedoch auch konkrete Hinweise auf die entscheidenden elektrochemischen Prozesse in Lithium-reichen Kathodenmaterialien. „Eine Reihe dieser Materialien, die wir bisher untersuchen konnten, zeigt ähnliche strukturelle Veränderungen wie Li2MnO3. Aber inzwischen verstehen wir die elektrochemischen Prozesse besser, so dass wir in Zukunft die Leistung gezielt verbessern können”, hofft Rana.

Jatinkumar Rana et al.  “Structural Changes in Li2MnO3 Cathode Material for Li-Ion Batteries”, Advanced Energy Materials,  DOI: 10.1002/aenm.201300998

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Sasol und HZB vertiefen Zusammenarbeit mit Fokus auf Digitalisierung
    Nachricht
    08.10.2025
    Sasol und HZB vertiefen Zusammenarbeit mit Fokus auf Digitalisierung
    Sasol Research & Technology und das Helmholtz-Zentrum Berlin (HZB) erweitern ihre Partnerschaft auf den Bereich der Digitalisierung. Dabei bauen sie auf gemeinsamen Anstrengungen im Rahmen des CARE-O-SENE-Projekts und einer Anfang 2025 ins Leben gerufenen Industrial Fellowship auf. Die neue Initiative ist ein Schritt vorwärts bei der Nutzung digitaler Technologien, um Innovation bei Katalysatoren zu beschleunigen und die  wissenschaftliche Zusammenarbeit zu vertiefen.
  • Verleihung des Technologietransfer-Preises 2025
    Nachricht
    07.10.2025
    Verleihung des Technologietransfer-Preises 2025
    Die Verleihung des Technologietransfer-Preises wird am 13. Oktober um 14 Uhr im Hörsaal des BESSY-II-Gebäudes in Adlershof stattfinden.
  • Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Science Highlight
    01.10.2025
    Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Forschende haben erstmals die tatsächlichen Eigenschaften einzelner MXene-Flocken gemessen – einem spannenden neuen Nanomaterial mit Potenzial für bessere Batterien, flexible Elektronik und Geräte für saubere Energie. Mithilfe einer neuartigen lichtbasierten Technik – der spektroskopischen Mikroellipsometrie – haben sie herausgefunden, wie sich MXene auf der Ebene einzelner Flocken verhalten und dabei Veränderungen in der Leitfähigkeit und der optischen Reaktion aufgedeckt, die zuvor bei der Untersuchung gestapelter Schichten verborgen geblieben waren. Dieser Durchbruch liefert grundlegendes Wissen und Werkzeuge für die Entwicklung intelligenterer und effizienterer Technologien auf Basis von MXenen.