Elektronenspins mit Licht steuern

Die Abbildung zeigt die typische Spintextur (Pfeile) eines topologischen Isolators (unten) und wie diese durch zirkular polarisiertes Licht entweder gemessen (oben) oder kontrolliert verändert wird (Mitte).

Die Abbildung zeigt die typische Spintextur (Pfeile) eines topologischen Isolators (unten) und wie diese durch zirkular polarisiertes Licht entweder gemessen (oben) oder kontrolliert verändert wird (Mitte). © Rader/Sánchez-Barriga/HZB

HZB-Wissenschaftler beeinflussen den Elektronenspin an der Oberfläche Topologischer Isolatoren gezielt mit Licht

Topologische Isolatoren gelten als vielversprechende Materialklasse für die Entwicklung zukünftiger elektronischer Bausteile. Ein Forscherteam am Helmholtz-Zentrum Berlin (HZB) hat jetzt herausgefunden, wie man mit Licht die physikalischen Eigenschaften der Elektronen in diesen Materialien verändern kann. Ihre Ergebnisse haben die Wissenschaftler jetzt in der renommierten Fachzeitschrift „Physical Review X“ veröffentlicht.

Die erst vor wenigen Jahren entdeckte Materialklasse der Topologischen Isolatoren zeichnet sich durch erstaunliche Eigenschaften aus: Sie verhalten sich im Innern elektrisch isolierend, bilden an der Oberfläche jedoch metallisch leitende Zustände. Der Spin der Elektronen, also ihre Drehung um die eigene Achse, spielt dabei eine entscheidende Rolle. Die Drehrichtung ist hier nämlich direkt mit ihrer Bewegungsrichtung gekoppelt. Das führt sowohl zu einer hohen Stabilität der metallischen Eigenschaft wie auch zu einer besonders verlustarmen elektrischen Leitung. Topologische Isolatoren werden daher als interessante und vielversprechende Kandidaten für neuartige Bauelemente in der Informationstechnologie gehandelt.

Als besonders innovativ gilt der Ansatz, in derartigen Bauelementen den Elektronenspin an der Oberfläche mithilfe von Licht zu beeinflussen. Der HZB-Wissenschaftler Prof. Dr. Oliver Rader und sein Team haben nun herausgefunden, durch welche Einflüsse sich die Spins an der Oberfläche der Topologischen Isolatoren verändern lassen. Dazu haben die Forscher Experimente mit Licht unterschiedlicher Energie beziehungsweise Wellenlänge gemacht.

Die Wellenlänge macht den Unterschied
An der Synchrotronstrahlungsquelle BESSY II untersuchten sie den Topologischen Isolator Bismutselenid (Bi2Se3) mit einer als „spinauflösende Photoelektronenspektroskopie“ bezeichneten Methode – und kamen zu verblüffenden Erkenntnissen: Sie fanden heraus, dass es einen wesentlichen Unterschied macht, ob die Elektronen an der Oberfläche des Materials mit zirkular polarisiertem Licht im vakuumultravioletten Bereich (50-70 Elektronenvolt) oder mit ultraviolettem Laserlicht (6 Elektronenvolt) anregt werden.
Sie konnten beweisen, dass sie den Spin der Elektronen bei den höheren Energien, wie sie typischerweise am Synchrotron zum Einsatz kommen, messen können, ohne ihn zu verändern. „Bei der Anregung mit 50 Elektronenvolt weisen die emittierten Elektronen die für Topologische Isolatoren typische Spintextur auf“, sagt Dr. Jaime Sánchez-Barriga, der die Messungen durchgeführt hat: „Die Spins der Elektronen laufen hier in der Oberflächenebene im Kreis, ähnlich wie auf einem Verkehrsschild für Kreisverkehr.“ Dies ist der Grundzustand der Elektronen in der Oberfläche der Topologischen Isolatoren.

Bei der Anregung mit niederenergetischen zirkular polarisierten Photonen (6 eV) hingegen drehten sich die Spins der Elektronen komplett aus der Ebene heraus. Sie nahmen dabei sogar diejenige Spinrichtung an, die ihnen mit dem rechts- beziehungsweise linkszirkular polarisierten Licht vorgegeben wurde. Das bedeutet, dass sich der Spin gezielt manipulieren lässt – je nachdem, welches Licht zum Einsatz kommt. Das vollkommen unterschiedliche Verhalten bei unterschiedlich großen Energien können die Wissenschaftler ebenfalls erklären und auf Symmetrieeigenschaften zurückführen. „Unser Ergebnis liefert wichtige Erkenntnisse darüber, wie sich in topologischen Isolatoren verlustlose Spinströme erzeugen lassen“, sagt Oliver Rader: „Das ist für die Entwicklung sogenannter optospintronischer Bauteile wichtig, die die Verarbeitungs- und Speichergeschwindigkeit von Information enorm erhöhen könnten.“

DFG-Schwerpunktprogramm
Wegen des großen Potenzial, dass die Topologischen Isolatoren versprechen, hat die Deutsche Forschungsgesellschaft (DFG) das Schwerpunktprogramm „Topological Insulators: Materials – Fundamental Properties – Devices“ initiiert. Es wird von Prof. Rader koordiniert und hat zum Ziel, die Physik der Oberflächenzustände in topologischen Isolatoren besser zu verstehen.

Originalpublikation: Photoemission of Bi2Se3 with Circularly Polarized Light: Probe of Spin Polarization or Means for Spin Manipulation? Phys. Rev. X 4, 011046 – Published 24 March 2014; J. Sánchez-Barriga, A. Varykhalov, J. Braun, S.-Y. Xu, N. Alidoust, O. Kornilov, J. Minár, K. Hummer, G. Springholz, G. Bauer, R. Schumann, L. V. Yashina, H. Ebert, M. Z. Hasan, and O. Rader.

HS

  • Link kopieren

Das könnte Sie auch interessieren

  • Faszinierendes Fundstück wird zu wertvoller Wissensquelle
    Nachricht
    12.02.2026
    Faszinierendes Fundstück wird zu wertvoller Wissensquelle
    Das Bayerische Landesamt für Denkmalpflege (BLfD) hat ein besonderes Fundstück aus der mittleren Bronzezeit nach Berlin geschickt, um es mit modernsten Methoden zerstörungsfrei zu untersuchen: Es handelt sich um ein mehr als 3400 Jahre altes Bronzeschwert, das 2023 im schwäbischen Nördlingen bei archäologischen Grabungen zutage trat. Die Expertinnen und Experten konnten herausfinden, wie Griff und Klinge miteinander verbunden sind und wie die seltenen und gut erhaltenen Verzierungen am Knauf angefertigt wurden – und sich so den Handwerkstechniken im Süddeutschland der Bronzezeit annähern. Zum Einsatz kamen eine 3D-Computertomographie und Röntgendiffraktion zur Eigenspannungsanalyse am Helmholtz-Zentrum Berlin (HZB) sowie die Röntgenfluoreszenz-Spektroskopie bei einem von der Bundesanstalt für Materialforschung und -prüfung (BAM) betreuten Strahlrohr an BESSY II.
  • Topologische Überraschungen beim Element Kobalt
    Science Highlight
    11.02.2026
    Topologische Überraschungen beim Element Kobalt
    Das Element Kobalt gilt als typischer Ferromagnet ohne weitere Geheimnisse. Ein internationales Team unter der Leitung von Dr. Jaime Sánchez-Barriga (HZB) hat nun jedoch komplexe topologische Merkmale in der elektronischen Struktur von Kobalt entdeckt. Spin-aufgelöste Messungen der Bandstruktur (Spin-ARPES) an BESSY II zeigten verschränkte Energiebänder, die sich selbst bei Raumtemperatur entlang ausgedehnter Pfade in bestimmten kristallographischen Richtungen kreuzen. Dadurch kann Kobalt als hochgradig abstimmbare und unerwartet reichhaltige topologische Plattform verstanden werden. Dies eröffnet Perspektiven, um magnetische topologische Zustände in Kobalt für künftige Informationstechnologien zu nutzen.
  • MXene als Energiespeicher: Vielseitiger als gedacht
    Science Highlight
    03.02.2026
    MXene als Energiespeicher: Vielseitiger als gedacht
    MXene-Materialien könnten sich für eine neue Technologie eignen, um elektrische Ladungen zu speichern. Die Ladungsspeicherung war jedoch bislang in MXenen nicht vollständig verstanden. Ein Team am HZB hat erstmals einzelne MXene-Flocken untersucht, um diese Prozesse im Detail aufzuklären. Mit dem in situ-Röntgenmikroskop „MYSTIIC” an BESSY II gelang es ihnen, die chemischen Zustände von Titanatomen auf den Oberflächen der MXene-Flocken zu kartieren. Die Ergebnisse zeigen, dass es zwei unterschiedliche Redox-Reaktionen gibt, die vom jeweils verwendeten Elektrolyten abhängen. Die Studie schafft eine Grundlage für die Optimierung von MXene-Materialien als pseudokapazitive Energiespeicher.