Controlling electron spins by light

The picture shows the characteristic spin texture (arrows) in a topological insulator (bottom) and how it is either probed by circularly polarized light (top) or manipulated by it (middle).

The picture shows the characteristic spin texture (arrows) in a topological insulator (bottom) and how it is either probed by circularly polarized light (top) or manipulated by it (middle). © Rader/Sánchez-Barriga/HZB

Researchers of HZB manipulate the electron spin at the surface of topological insulators systematically by light

Topological insulators are considered a very promising material class for the development of future electronic devices. A research team at Helmholtz-Zentrum Berlin (HZB) has discovered, how light can be used to alter the physical properties of the electrons in these materials. Their results have just been published by the renowned journal "Physical Review X".

The material class of topological insulators has been discovered a few years ago and displays amazing properties: In their inside, they behave electrically insulating but at their surface they form metallic, conducting states. The electron spin, i. e., their intrinsic angular momentum, is playing a decisive role. Their sense of rotation is directly coupled to their direction of movement. This coupling leads not only to a high stability of the metallic property but also enables a particularly lossless electrical conduction. Topological insulators are, therefore, considered interesting and promising candidates for novel devices in information technology.
A particularly innovative approach is to try and influence the electron spin at the surface in such devices by light. HZB researcher Prof. Oliver Rader and his team have discovered by which means the spin at the surface of topological insulators can be altered. To this end, the researches performed experiments with light of various energies or wavelengths.

The wavelenght counts
At the synchrotron radiation source BESSY II they investigated the topological insulator bismuth selenide (Bi2Se3) using a method called "spin-resolved photoelectron spectroscopy" – and gained astonishing insights: They found an astonishing difference depending on whether the electrons at the surface of the material are excited with circularly polarized light in the vacuum ultraviolet (50-70 electron volts, eV) or in the ultraviolet spectral range (6 eV). They could demonstrate that they can measure the spin of the electrons without changing it at higher energies which are typically used at synchtrotron light sources. "When excited at 50 eV, the emitted electros display the typical spin texture of topological insulators", Dr. Jaime Sánchez-Barriga, who conducted the experiments, explains. "The electron spins are in the surface aligned on a circle, similarly to a traffic sign for roundabout." This is the ground state of the electrons in the surface of topological insulators."

When excited by low-energy circularly polarized photons (6 eV), the spin of the electrons moved completely out of the surface plane. Above all, they adopted the spin orientation imposed by the right- or left-circularly polarized light. This means that the spin can be systematically manipulated – depending on the light that is used. The scientists can also explain the entirely different behavior at different energies which they attribute to symmetry properties. "Our result delivers important insight how lossless currents could be induced in topological insulators", Oliver Rader explains. "This is important for the development of so-called optospintronic devices which could enormously enhance the speed at which information is stored and processed."

DFG Priority Program
Due to the high potential promised by topological insulators, the German Research Foundation DFG initiated the Priority Program „Topological Insulators: Materials – Fundamental Properties – Devices“. Prof. Rader coordinates this program which aims at an improved understanding of the physics of the surface states in topological insulators.

Publication: Photoemission of Bi2Se3 with Circularly Polarized Light: Probe of Spin Polarization or Means for Spin Manipulation? Phys. Rev. X 4, 011046 – Published 24 March 2014; J. Sánchez-Barriga, A. Varykhalov, J. Braun, S.-Y. Xu, N. Alidoust, O. Kornilov, J. Minár, K. Hummer, G. Springholz, G. Bauer, R. Schumann, L. V. Yashina, H. Ebert, M. Z. Hasan, and O. Rader.

HS


You might also be interested in

  • Sodium-ion batteries: How doping works
    Science Highlight
    20.02.2024
    Sodium-ion batteries: How doping works
    Sodium-ion batteries still have a number of weaknesses that could be remedied by optimising the battery materials. One possibility is to dope the cathode material with foreign elements. A team from HZB and Humboldt-Universität zu Berlin has now investigated the effects of doping with Scandium and Magnesium. The scientists collected data at the X-ray sources BESSY II, PETRA III, and SOLARIS to get a complete picture and uncovered two competing mechanisms that determine the stability of the cathodes.
  • BESSY II: Molecular orbitals determine stability
    Science Highlight
    07.02.2024
    BESSY II: Molecular orbitals determine stability
    Carboxylic acid dianions (fumarate, maleate and succinate) play a role in coordination chemistry and to some extent also in the biochemistry of body cells. An HZB team at BESSY II has now analysed their electronic structures using RIXS in combination with DFT simulations. The results provide information not only on electronic structures but also on the relative stability of these molecules which can influence an industry's choice of carboxylate dianions, optimizing both the stability and geometry of coordination polymers.
  • BESSY II: Local variations in the structure of High-Entropy Alloys
    Science Highlight
    30.01.2024
    BESSY II: Local variations in the structure of High-Entropy Alloys
    High-entropy alloys can withstand extreme heat and stress, making them suitable for a variety of specific applications. A new study at the X-ray synchrotron radiation source BESSY II has now provided deeper insights into the ordering processes and diffusion phenomena in these materials. The study involved teams from HZB, the Federal Institute for Materials Research and Testing, the University of Latvia and the University of Münster.