Controlling electron spins by light

The picture shows the characteristic spin texture (arrows) in a topological insulator (bottom) and how it is either probed by circularly polarized light (top) or manipulated by it (middle).

The picture shows the characteristic spin texture (arrows) in a topological insulator (bottom) and how it is either probed by circularly polarized light (top) or manipulated by it (middle). © Rader/Sánchez-Barriga/HZB

Researchers of HZB manipulate the electron spin at the surface of topological insulators systematically by light

Topological insulators are considered a very promising material class for the development of future electronic devices. A research team at Helmholtz-Zentrum Berlin (HZB) has discovered, how light can be used to alter the physical properties of the electrons in these materials. Their results have just been published by the renowned journal "Physical Review X".

The material class of topological insulators has been discovered a few years ago and displays amazing properties: In their inside, they behave electrically insulating but at their surface they form metallic, conducting states. The electron spin, i. e., their intrinsic angular momentum, is playing a decisive role. Their sense of rotation is directly coupled to their direction of movement. This coupling leads not only to a high stability of the metallic property but also enables a particularly lossless electrical conduction. Topological insulators are, therefore, considered interesting and promising candidates for novel devices in information technology.
A particularly innovative approach is to try and influence the electron spin at the surface in such devices by light. HZB researcher Prof. Oliver Rader and his team have discovered by which means the spin at the surface of topological insulators can be altered. To this end, the researches performed experiments with light of various energies or wavelengths.

The wavelenght counts
At the synchrotron radiation source BESSY II they investigated the topological insulator bismuth selenide (Bi2Se3) using a method called "spin-resolved photoelectron spectroscopy" – and gained astonishing insights: They found an astonishing difference depending on whether the electrons at the surface of the material are excited with circularly polarized light in the vacuum ultraviolet (50-70 electron volts, eV) or in the ultraviolet spectral range (6 eV). They could demonstrate that they can measure the spin of the electrons without changing it at higher energies which are typically used at synchtrotron light sources. "When excited at 50 eV, the emitted electros display the typical spin texture of topological insulators", Dr. Jaime Sánchez-Barriga, who conducted the experiments, explains. "The electron spins are in the surface aligned on a circle, similarly to a traffic sign for roundabout." This is the ground state of the electrons in the surface of topological insulators."

When excited by low-energy circularly polarized photons (6 eV), the spin of the electrons moved completely out of the surface plane. Above all, they adopted the spin orientation imposed by the right- or left-circularly polarized light. This means that the spin can be systematically manipulated – depending on the light that is used. The scientists can also explain the entirely different behavior at different energies which they attribute to symmetry properties. "Our result delivers important insight how lossless currents could be induced in topological insulators", Oliver Rader explains. "This is important for the development of so-called optospintronic devices which could enormously enhance the speed at which information is stored and processed."

DFG Priority Program
Due to the high potential promised by topological insulators, the German Research Foundation DFG initiated the Priority Program „Topological Insulators: Materials – Fundamental Properties – Devices“. Prof. Rader coordinates this program which aims at an improved understanding of the physics of the surface states in topological insulators.

Publication: Photoemission of Bi2Se3 with Circularly Polarized Light: Probe of Spin Polarization or Means for Spin Manipulation? Phys. Rev. X 4, 011046 – Published 24 March 2014; J. Sánchez-Barriga, A. Varykhalov, J. Braun, S.-Y. Xu, N. Alidoust, O. Kornilov, J. Minár, K. Hummer, G. Springholz, G. Bauer, R. Schumann, L. V. Yashina, H. Ebert, M. Z. Hasan, and O. Rader.

HS

  • Copy link

You might also be interested in

  • Fascinating archaeological find becomes a source of knowledge
    News
    12.02.2026
    Fascinating archaeological find becomes a source of knowledge
    The Bavarian State Office for the Preservation of Historical Monuments (BLfD) has sent a rare artefact from the Middle Bronze Age to Berlin for examination using cutting-edge, non-destructive methods. It is a 3,400-year-old bronze sword, unearthed during archaeological excavations in Nördlingen, Swabia, in 2023. Experts have been able to determine how the hilt and blade are connected, as well as how the rare and well-preserved decorations on the pommel were made. This has provided valuable insight into the craft techniques employed in southern Germany during the Bronze Age. The BLfD used 3D computed tomography and X-ray diffraction to analyse internal stresses at the Helmholtz-Zentrum Berlin (HZB), as well as X-ray fluorescence spectroscopy at a BESSY II beamline supervised by the Bundesanstalt für Materialforschung und -prüfung (BAM).
  • Element cobalt exhibits surprising properties
    Science Highlight
    11.02.2026
    Element cobalt exhibits surprising properties
    The element cobalt is considered a typical ferromagnet with no further secrets. However, an international team led by HZB researcher Dr. Jaime Sánchez-Barriga has now uncovered complex topological features in its electronic structure. Spin-resolved measurements of the band structure (spin-ARPES) at BESSY II revealed entangled energy bands that cross each other along extended paths in specific crystallographic directions, even at room temperature. As a result, cobalt can be considered as a highly tunable and unexpectedly rich topological platform, opening new perspectives for exploiting magnetic topological states in future information technologies.
  • MXene for energy storage: More versatile than expected
    Science Highlight
    03.02.2026
    MXene for energy storage: More versatile than expected
    MXene materials are promising candidates for a new energy storage technology. However, the processes by which the charge storage takes place were not yet fully understood. A team at HZB has examined, for the first time, individual MXene flakes to explore these processes in detail. Using the in situ Scanning transmission X-ray microscope 'MYSTIIC' at BESSY II, the scientists mapped the chemical states of Titanium atoms on the MXene flake surfaces. The results revealed two distinct redox reactions, depending on the electrolyte. This lays the groundwork for understanding charge transfer processes at the nanoscale and provides a basis for future research aimed at optimising pseudocapacitive energy storage devices.