Collecting light with artificial moth eyes

Ammonium tungstate/PSS film surface:  (a) SEM picture before pyrolysis; (b & c) SEM picture after pyrolysis.

Ammonium tungstate/PSS film surface: (a) SEM picture before pyrolysis; (b & c) SEM picture after pyrolysis. © EMPA

Scientists at EMPA in Zürich and University of Basel have developed a photoelectrochemical cell, recreating a moth’s eye to drastically increase its light collecting efficiency. The cell is made of cheap raw materials – iron and tungsten oxide. Analyses at BESSY II have revealed which chemical processes are useful to facilitate the absorption of light.

Empa researchers Florent Boudoire and Artur Braun have implemented a special microstructure on the photoelectrode surface, which gathers sunlight and does not let it out again. The basis for this innovative structure are tiny particles of tungsten oxide. These yellow microspheres are applied to an electrode and then covered with an extremely thin layer of iron oxide. When light falls on the particles it is internally reflected back and forth, till finally all the light is absorbed. All the entire energy in the beam is now available to use for splitting the water molecules.

In principle the newly conceived microstructure functions like the eye of a moth, explains Florent Boudoire. The eyes of these night active creatures need to collect as much light as possible to see in the dark, and also must reflect as little as possible to avoid detection and being eaten by their enemies. The microstructure of their eyes especially adapted to the appropriate wavelength of light. Empa's photocells take advantage of the same effect.

The swiss team did analyze their samples under the x-ray microscope at BESSY II in order to get detailed information about the absorption of light and the chemical processes which enhance it.

Information of EMPA

Publication in Energy&Environmental Sciences
 

EMPA/arö

  • Copy link

You might also be interested in

  • Tage des offenen Reallabors - Das HZB lädt ein!
    Nachricht
    11.06.2025
    Tage des offenen Reallabors - Das HZB lädt ein!
    Photovoltaik trifft Architektur.
  • AI in Chemistry: Study Highlights Strengths and Weaknesses
    News
    04.06.2025
    AI in Chemistry: Study Highlights Strengths and Weaknesses
    How well does artificial intelligence perform compared to human experts? A research team at HIPOLE Jena set out to answer this question in the field of chemistry. Using a newly developed evaluation method called “ChemBench,” the researchers compared the performance of modern language models such as GPT-4 with that of experienced chemists. 

  • TH Wildau and Helmholtz Zentrum Berlin signed comprehensive cooperation
    News
    30.05.2025
    TH Wildau and Helmholtz Zentrum Berlin signed comprehensive cooperation
    On 21 May 2025, the Technical University of Applied Sciences Wildau (TH Wildau) and the Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), signed a comprehensive cooperation agreement. The aim is to further promote networking and cooperation, particularly in basic research, to increase the scientific excellence of both partners and to develop competence networks in research, teaching and the training of young scientists.