Künstliches Mottenauge als Lichtfänger
Rasterelektronenmikroskopie der Oberfläche vor der Pyrolyse (a) und nach der Pyrolyse (b und c). © EMPA
Forscher der EMPA bei Zürich und der Universität Basel haben an BESSY II eine photoelektrochemische Zelle untersucht, deren Oberfläche ähnlich wie ein Mottenauge strukturiert ist. So fängt sie deutlich mehr Licht ein, was Ausbeute an gewonnenem Wasserstoff erhöht. Für die Strukturierung verwendeten sie preiswerte Materialien wie Wolframoxid und Rost.
Die EMPA-Forscher Florent Boudoire und Artur Braun haben eine spezielle Mikrostruktur auf der Photoelektrode aufgebracht, die aus winzigen Partikeln von Wolframoxid besteht. Die gelben Kügelchen werden auf einer Elektrode aufgetragen und dann mit einer hauchdünnen Schicht Eisenoxid überzogen. Fällt Licht auf die Partikel, wird es mehrfach hin und her reflektiert, bis es absorbiert ist, und die gesamte Energie für die Spaltung von Wassermolekülen zur Verfügung steht.
Im Grunde funktioniere die neu erdachte Mikrostruktur wie das Auge einer Motte, erklärt Florent Boudoire: Die Augen von Nachtfaltern müssen viel Licht einsammeln – und dürfen so wenig wie möglich reflektieren, sonst wird der Falter entdeckt und gefressen. Die Mikrostruktur dieser Augen ist speziell auf die Wellenlänge des Lichts angepasst. Die Forscher sind in der Lage, die Prozessparameter für die Filmbildung so einzustellen, dass die optischen Eigenschaften der Struktur auf das Sonnenspektrum abgestimmt sind.
Das Forschungsteam aus der Schweiz hat am Röntgenmikroskop von BESSY II untersucht, welche chemischen Prozesse im Detail bei der Elektrodenherstellung nötig sind.
Zur Info der EMPA
Zur Publikation in Energy&Environmental Sciences
EMPA/arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=14008;sprache=de
- Link kopieren
-
Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
-
Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
Das Helmholtz-Zentrum Berlin und die Nationale Universität Kyjiw-Mohyla-Akademie haben am 27. November ein gemeinsames Energie- und Klimalabor gegründet.
-
Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
Ein Forschungsteam vom Helmholtz Zentrum Berlin (HZB) und dem Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI) hat herausgefunden, wie Karbonatmoleküle die Umwandlung von CO2 in nützliche Kraftstoffe durch Gold-Elektrokatalysatoren beeinflussen. Ihre Studie beleuchtet, welche molekularen Mechanismen bei der CO2-Elektrokatalyse und der Wasserstoffentwicklung eine Rolle spielen und zeigt Strategien zur Verbesserung der Energieeffizienz und der Selektivität der katalytischen Reaktion auf.