Künstliches Mottenauge als Lichtfänger

Rasterelektronenmikroskopie der Oberfläche vor der Pyrolyse (a) und nach der Pyrolyse (b und c).

Rasterelektronenmikroskopie der Oberfläche vor der Pyrolyse (a) und nach der Pyrolyse (b und c). © EMPA

Forscher der EMPA bei Zürich und der Universität Basel haben an BESSY II eine photoelektrochemische Zelle untersucht, deren Oberfläche ähnlich wie ein Mottenauge strukturiert ist. So fängt sie deutlich mehr Licht ein, was Ausbeute an gewonnenem Wasserstoff erhöht. Für die Strukturierung verwendeten sie preiswerte Materialien wie Wolframoxid und Rost.

Die EMPA-Forscher Florent Boudoire und Artur Braun haben eine spezielle Mikrostruktur auf der Photoelektrode aufgebracht, die aus winzigen Partikeln von Wolframoxid besteht. Die gelben Kügelchen werden auf einer Elektrode aufgetragen und dann mit einer hauchdünnen Schicht Eisenoxid überzogen. Fällt Licht auf die Partikel, wird es mehrfach hin und her reflektiert, bis es absorbiert ist, und die gesamte Energie für die Spaltung von Wassermolekülen zur Verfügung steht.

Im Grunde funktioniere die neu erdachte Mikrostruktur wie das Auge einer Motte, erklärt Florent Boudoire: Die Augen von Nachtfaltern müssen viel Licht einsammeln – und dürfen so wenig wie möglich reflektieren, sonst wird der Falter entdeckt und gefressen. Die Mikrostruktur dieser Augen ist speziell auf die Wellenlänge des Lichts angepasst. Die Forscher sind in der Lage, die Prozessparameter für die Filmbildung so einzustellen, dass die optischen Eigenschaften der Struktur auf das Sonnenspektrum abgestimmt sind.

Das Forschungsteam aus der Schweiz hat am Röntgenmikroskop von BESSY II untersucht, welche chemischen Prozesse im Detail bei der Elektrodenherstellung nötig sind. 

 

Zur Info der EMPA

Zur Publikation in Energy&Environmental Sciences

EMPA/arö

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: Wie photoelektrochemische Zellen wettbewerbsfähig werden könnten
    Science Highlight
    20.03.2023
    Grüner Wasserstoff: Wie photoelektrochemische Zellen wettbewerbsfähig werden könnten
    Mit Sonnenlicht lässt sich grüner Wasserstoff in photoelektrochemischen Zellen (PEC) direkt aus Wasser erzeugen. Bisher waren Systeme, die auf diesem 'direkten Ansatz' basieren, energetisch nicht wettbewerbsfähig. Die Bilanz ändert sich jedoch, sobald ein Teil des Wasserstoffs in PEC-Zellen in-situ für erwünschte Reaktionen genutzt wird. Dadurch lassen sich wertvolle Chemikalien für die chemische und pharmazeutische Industrie produzieren. Die Zeit für die Energie-Rückgewinnung des direkten Ansatztes mit der PEC-Zelle kann damit drastisch verkürzt werden, zeigt eine neue Studie aus dem HZB.
  • Soup & Science: Die solare Zukunft
    Nachricht
    20.03.2023
    Soup & Science: Die solare Zukunft
    Damit die Energiewende gelingt, sind erneuerbare Energiequellen von zentraler Bedeutung. Gerade in der Photovoltaik steckt ein enormes Potential. Strom aus der Fassade, bauwerkintegrierte Photovoltaik, neue Baumaterialien – sind dabei wichtige Themenschwerpunkte. Samira Aden ist zu Gast bei Lunchtalk Soup & Science, einer Kooperation von rbb24 Inforadio und der Technologiestiftung Berlin.

    Gespräch findet am Donnerstag 23. März 2023, 12:30 Uhr statt.

    Ort:
    Technologiestiftung Berlin
    Grunewaldstraße 61-62
 10825 Berlin

    Referentin
    Samira Jama Aden 
Helmholtz-Zentrum Berlin für Materialien und Energie, BAIP Beratungsstelle für bauwerkintegrierte Photovoltaik

    Moderation
    Axel Dorloff
 rbb24 Inforadio
Chef vom Dienst / Aktuelle Redaktion / Wissenschaft

    Das Gespräch wird voraussichtlich am Sonntag, 2. April 2023 um 9:33 Uhr und 14:33 Uhr sowie am Dienstag, den 4.April 2023 um 19:33 Uhr auf rbb24 Inforadio ausgestrahlt und ist anschließend auf der Inforadio Webseite  und in der ARD Audiothek als Podcast verfügbar. 

    Anmeldeschluss ist bis Mittwoch, 22. März 2023 möglich. Eine Teilnahme ist aufgrund der begrenzten Plätze nur mit Anmeldung möglich.

  • Perowskitsolarzellen durch Schlitzdüsenbeschichtung – ein Schritt zur industriellen Produktion
    Science Highlight
    16.03.2023
    Perowskitsolarzellen durch Schlitzdüsenbeschichtung – ein Schritt zur industriellen Produktion
    Solarzellen aus Metallhalogenid-Perowskiten erreichen hohe Wirkungsgrade und lassen sich mit wenig Energieaufwand aus flüssigen Tinten produzieren. Solche Verfahren untersucht ein Team um Prof. Dr. Eva Unger am Helmholtz-Zentrum Berlin. An der Röntgenquelle BESSY II hat die Gruppe nun gezeigt, wie wichtig die Zusammensetzung von Vorläufertinten für die Erzeugung qualitativ-hochwertiger FAPbI3-Perowskit-Dünnschichten ist. Die mit den besten Tinten hergestellten Solarzellen wurden ein Jahr im Außeneinsatz getestet und auf Minimodulgröße skaliert.