Collecting light with artificial moth eyes

Ammonium tungstate/PSS film surface:  (a) SEM picture before pyrolysis; (b & c) SEM picture after pyrolysis.

Ammonium tungstate/PSS film surface: (a) SEM picture before pyrolysis; (b & c) SEM picture after pyrolysis. © EMPA

Scientists at EMPA in Zürich and University of Basel have developed a photoelectrochemical cell, recreating a moth’s eye to drastically increase its light collecting efficiency. The cell is made of cheap raw materials – iron and tungsten oxide. Analyses at BESSY II have revealed which chemical processes are useful to facilitate the absorption of light.

Empa researchers Florent Boudoire and Artur Braun have implemented a special microstructure on the photoelectrode surface, which gathers sunlight and does not let it out again. The basis for this innovative structure are tiny particles of tungsten oxide. These yellow microspheres are applied to an electrode and then covered with an extremely thin layer of iron oxide. When light falls on the particles it is internally reflected back and forth, till finally all the light is absorbed. All the entire energy in the beam is now available to use for splitting the water molecules.

In principle the newly conceived microstructure functions like the eye of a moth, explains Florent Boudoire. The eyes of these night active creatures need to collect as much light as possible to see in the dark, and also must reflect as little as possible to avoid detection and being eaten by their enemies. The microstructure of their eyes especially adapted to the appropriate wavelength of light. Empa's photocells take advantage of the same effect.

The swiss team did analyze their samples under the x-ray microscope at BESSY II in order to get detailed information about the absorption of light and the chemical processes which enhance it.

Information of EMPA

Publication in Energy&Environmental Sciences
 

EMPA/arö


You might also be interested in

  • MXenes for energy storage: Chemical imaging more than just surface deep
    Science Highlight
    17.06.2024
    MXenes for energy storage: Chemical imaging more than just surface deep
    A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.
  • New joint leadership for BESSY II
    News
    13.06.2024
    New joint leadership for BESSY II
    Andreas Jankowiak as new Technical Director and Facility Spokesperson Antje Vollmer share management responsibilities

    Prof. Andreas Jankowiak has been appointed Technical Director of BESSY II with a term of office of three years as of 1 June 2024 by resolution of the HZB board of directors. Antje Vollmer will start her second term as BESSY II Facility Spokesperson on 1 July 2024. Together, they form the new management duo to coordinate the scientific and technical development of the BESSY II X-ray source on behalf of the HZB management.

  • Chilean President visits Helmholtz-Zentrum Berlin
    News
    12.06.2024
    Chilean President visits Helmholtz-Zentrum Berlin
    The President of Chile, Gabriel Boric Font, visited HZB on Tuesday with a delegation of 50 people. Among the highlights of the evening were the signing of a Memorandum of Understanding between the Chilean Corporation for the Promotion of Production (CORFO) and HZB and a visit to BESSY II light source.