Collecting light with artificial moth eyes

Ammonium tungstate/PSS film surface:  (a) SEM picture before pyrolysis; (b & c) SEM picture after pyrolysis.

Ammonium tungstate/PSS film surface: (a) SEM picture before pyrolysis; (b & c) SEM picture after pyrolysis. © EMPA

Scientists at EMPA in Zürich and University of Basel have developed a photoelectrochemical cell, recreating a moth’s eye to drastically increase its light collecting efficiency. The cell is made of cheap raw materials – iron and tungsten oxide. Analyses at BESSY II have revealed which chemical processes are useful to facilitate the absorption of light.

Empa researchers Florent Boudoire and Artur Braun have implemented a special microstructure on the photoelectrode surface, which gathers sunlight and does not let it out again. The basis for this innovative structure are tiny particles of tungsten oxide. These yellow microspheres are applied to an electrode and then covered with an extremely thin layer of iron oxide. When light falls on the particles it is internally reflected back and forth, till finally all the light is absorbed. All the entire energy in the beam is now available to use for splitting the water molecules.

In principle the newly conceived microstructure functions like the eye of a moth, explains Florent Boudoire. The eyes of these night active creatures need to collect as much light as possible to see in the dark, and also must reflect as little as possible to avoid detection and being eaten by their enemies. The microstructure of their eyes especially adapted to the appropriate wavelength of light. Empa's photocells take advantage of the same effect.

The swiss team did analyze their samples under the x-ray microscope at BESSY II in order to get detailed information about the absorption of light and the chemical processes which enhance it.

Information of EMPA

Publication in Energy&Environmental Sciences
 

EMPA/arö


You might also be interested in

  • 14 parameters in one go: New instrument for optoelectronics
    Science Highlight
    21.02.2024
    14 parameters in one go: New instrument for optoelectronics
    An HZB physicist has developed a new method for the comprehensive characterisation of semiconductors in a single measurement. The "Constant Light-Induced Magneto-Transport (CLIMAT)" is based on the Hall effect and allows to record 14 different parameters of transport properties of negative and positive charge carriers. The method was tested now on twelve different semiconductor materials and will save valuable time in assessing new materials for optoelectronic applications such as solar cells.
  • Sodium-ion batteries: How doping works
    Science Highlight
    20.02.2024
    Sodium-ion batteries: How doping works
    Sodium-ion batteries still have a number of weaknesses that could be remedied by optimising the battery materials. One possibility is to dope the cathode material with foreign elements. A team from HZB and Humboldt-Universität zu Berlin has now investigated the effects of doping with Scandium and Magnesium. The scientists collected data at the X-ray sources BESSY II, PETRA III, and SOLARIS to get a complete picture and uncovered two competing mechanisms that determine the stability of the cathodes.
  • BESSY II: Molecular orbitals determine stability
    Science Highlight
    07.02.2024
    BESSY II: Molecular orbitals determine stability
    Carboxylic acid dianions (fumarate, maleate and succinate) play a role in coordination chemistry and to some extent also in the biochemistry of body cells. An HZB team at BESSY II has now analysed their electronic structures using RIXS in combination with DFT simulations. The results provide information not only on electronic structures but also on the relative stability of these molecules which can influence an industry's choice of carboxylate dianions, optimizing both the stability and geometry of coordination polymers.