Proteine: Neue Materialklasse entdeckt

Anordnung der Concanavalin A –Proteinmoleküle in zwei verschiedenen Protein Crystalline Frameworks.

Anordnung der Concanavalin A –Proteinmoleküle in zwei verschiedenen Protein Crystalline Frameworks. © Fudan Universität/HZB

Deutsch-chinesisches Forscherteam führt zentrale Untersuchungen zu „Protein Crystalline Frameworks“ an BESSY II des HZB durch

Wissenschaftler des Helmholtz-Zentrum Berlin (HZB) haben in Zusammenarbeit mit Forschern der chinesischen Fudan-Universität eine neue Materialklasse charakterisiert: so genannte Protein Crystalline Frameworks (PCFs).

In den PCFs sind Proteine über bestimmte Hilfssubstanzen derart fixiert, dass sie sich symmetrisch ausrichten und sehr stabile Kristalle bilden. Die Forscher von HZB und Fudan-Universität wollen jetzt die Anwendungsmöglichkeiten der PCFs als funktionale Materialien ausloten. Ihre Ergebnisse veröffentlichen sie heute im Fachjournal „Nature Communications“
(DOI: 10.1038/ncomms5634).

Jeder kennt das Phänomen vom Frühstücksei: Proteine sind empfindliche Moleküle. Unter bestimmten Umständen – etwa in kochendem Wasser – denaturieren sie, verlieren ihre natürliche Gestalt und werden fest. Zwar sind Forscher schon seit geraumer Zeit in der Lage, mit diesen Substanzen umzugehen und sie sogar so zu behandeln, dass sie Kristalle bilden. Dies gelingt aber nur unter enormem Aufwand, der sich nur für Forschungszwecke lohnt. Zudem sind auch die Protein-Kristalle sehr empfindlich.

Den Wissenschaftlern von der Fudan-Universität ist es nun erstmalig gelungen, diese Nachteile zu umgehen: Sie verknüpften das Protein Concanavalin A mit Hilfsmolekülen aus der Substanzklasse der Zucker sowie mit dem Farbstoff Rhodamin. Die so fixierten Concanavalin-Moleküle ordneten sich in dem Rahmen aus Hilfsstoffen symmetrisch an: Sie bildeten einen Kristall, in dem die Proteine stabil ineinander verschachtelt sind – ein Protein Crystalline Framework.

Die Entwicklung solch eines Molekülkonstrukts nützt nichts, wenn man nicht weiß, wie er sich bildet und wie sein Aufbau auf Ebene der Atome aussieht. Bei der Suche nach passenden Untersuchungsmöglichkeiten wandten sich die Forscher aus Shanghai an eine chinesische Wissenschaftlerin, die am HZB arbeitet. Sie wies ihre Kollegen auf die MX-Beamlines am Elektronenspeicherring BESSY II des HZB hin.

„Wir konnten am HZB mit unseren speziellen Kristallografie-Messplätzen optimale Voraussetzungen bieten, um die PCFs hochaufgelöst zu charakterisieren“, sagt Dr. Manfred Weiss, einer der leitenden Wissenschaftler des MX-Labors am HZB. Dabei wurde klar, dass man über die Hilfsmoleküle sogar steuern kann, wie stark sich die Protein-Netzwerke durchdringen. „Das gibt den PCFs eine enorme Flexibilität und Variabilität, die wir bei den nun anstehenden Forschungen zu möglichen Anwendungen stets im Auge haben werden“, so Manfred Weiss.

Originalpublikation:
Sakai, F. et al. Protein crystalline frameworks with controllable interpenetration directed by dual supramolecular interactions. Nat. Commun. 5:4634 doi: 10.1038/ncomms5634 (2014).

HS

  • Link kopieren

Das könnte Sie auch interessieren

  • Verleihung des Technologietransfer-Preises 2025
    Nachricht
    07.10.2025
    Verleihung des Technologietransfer-Preises 2025
    Die Verleihung des Technologietransfer-Preises wird am 13. Oktober um 14 Uhr im Hörsaal des BESSY-II-Gebäudes in Adlershof stattfinden.
  • Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Science Highlight
    01.10.2025
    Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Forschende haben erstmals die tatsächlichen Eigenschaften einzelner MXene-Flocken gemessen – einem spannenden neuen Nanomaterial mit Potenzial für bessere Batterien, flexible Elektronik und Geräte für saubere Energie. Mithilfe einer neuartigen lichtbasierten Technik – der spektroskopischen Mikroellipsometrie – haben sie herausgefunden, wie sich MXene auf der Ebene einzelner Flocken verhalten und dabei Veränderungen in der Leitfähigkeit und der optischen Reaktion aufgedeckt, die zuvor bei der Untersuchung gestapelter Schichten verborgen geblieben waren. Dieser Durchbruch liefert grundlegendes Wissen und Werkzeuge für die Entwicklung intelligenterer und effizienterer Technologien auf Basis von MXenen. 
  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.