Hochfeldmagnet sucht Neutronenleiter

Aus dem Technikum

Aus dem Technikum

Mit dem "Boom-Truck" auf Reisen

Mit dem "Boom-Truck" auf Reisen

Berliner Mutterwitz

Berliner Mutterwitz

"Da vorne bitte rechts abbiegen!"

"Da vorne bitte rechts abbiegen!"

Macht hoch die Tür, die Tor macht weit!

Macht hoch die Tür, die Tor macht weit!

Endhaltestelle Neutronenleiterhalle

Endhaltestelle Neutronenleiterhalle

Am Freitag, den 12. Dezember 2014 fand der Umzug des Hochfeldmagneten an seinen endgültigen Aufstellungsort in der Neutronenleiterhalle statt. Eine Spezialfirma für Maschinentransporte bugsierte den über 25 Tonnen schweren Stahlkoloss aus dem HFM-Technikum heraus und setzte ihn in Bewegung.

Auf Schwerlastrollen ging es dann „zweimal um die Ecke“ zur Neutronenleiterhalle II. Dort wurde der Magnet zentimeterweise über die Schwelle gezogen, wobei nur eine Fingerbreite Platz nach oben blieb. Ein Hubportal auf Schienen ließ dann den angehängten Magneten an seinen finalen Ort gleiten. Diese besondere Konstruktion war notwendig, da der Hallenkran nicht die erforderliche Belastbarkeit hat. Am darauffolgenden Montag, den 15.12. 14 wurde der Magnet dann auf 1 mm genau in seiner Endposition in Richtung des Neutronenleiters ausgerichtet.

Anschluss in Arbeit

In den nächsten Wochen wird der Magnet wieder an seine Versorgungsleitungen für Wasser, Helium und elektrischen Strom angeschlossen werden. Eine besondere konstruktive Herausforderung ist dabei, dass der Magnet um insgesamt 30° drehbar gelagert ist und alle Versorgungsleitungen diesen Schwenk mitmachen müssen. Dazu waren für alle Medien geeignete bewegliche Lagerungssysteme entwickelt worden.

Der Plan: Im Frühjahr 2015 erste Experimente möglich

„Wir sind froh, dass wir diesen wichtigen Schritt noch in 2014 geschafft haben“ ist Projektingenieur Matthias Hoffmann erleichtert. Erst im Januar diesen Jahres war die supraleitende Magnetspule im Kryostat aus Italien angekommen. Endmontage und Tests fanden dann in einem vergleichsweise kurzen Zeitraum von wenigen Monaten statt. Dennoch ist nun kaum Zeit übrig, um sich einmal eine längere Atempause zu gönnen. Der Projektleiter Peter Smeibidl rechnet mit großem Zuspruch durch die wissenschaftliche Community: „Die zukünftigen Nutzer können es kaum erwarten, nachdem wir signalisiert haben, dass wir Ende März betriebsbereit sein wollen“ .

Hartmut Ehmler

  • Link kopieren

Das könnte Sie auch interessieren

  • Verdrehte Nanoröhren, die eine Geschichte erzählen
    Nachricht
    09.12.2025
    Verdrehte Nanoröhren, die eine Geschichte erzählen
    In Zusammenarbeit mit deutschen Wissenschaftlern haben EPFL-Forscher gezeigt, dass die spiralförmige Geometrie winziger, verdrillter Magnetröhren genutzt werden kann, um Daten zu übertragen, die nicht auf Elektronen, sondern auf Quasiteilchen, den Magnonen, basieren.
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Science Highlight
    25.11.2025
    Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Eisen-Stickstoff-Kohlenstoff-Katalysatoren haben das Potenzial, teure Platinkatalysatoren in Brennstoffzellen zu ersetzen. Dies zeigt eine Studie aus Helmholtz-Zentrum Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universitäten in Tartu und Tallinn, Estland. An BESSY II beobachtete das Team, wie sich komplexe Mikrostrukturen in den Proben bilden. Anschließend analysierten sie, welche Strukturparameter für die Förderung der bevorzugten elektrochemischen Reaktionen besonders wichtig waren. Der Rohstoff für solche Katalysatoren ist gut zersetzter Torf.