HZB baut Forschung an elektrochemischen Energiespeichern aus

Arbeitsgruppen am HZB untersuchen neuartige Batteriesysteme und elektrochemische Energiespeicher im Helmholtz-Forschungsprogramm „Speicher und vernetzte Infrastrukturen“

Die Energiewende in Deutschland ist eine langfristige Aufgabe, auch für die Forschung.  Die Helmholtz-Gemeinschaft hat nun das Forschungsprogramm „Speicher und vernetzte Infrastrukturen“ aufgelegt, in dem fünf Helmholtz-Zentren an  systemübergreifenden Technologien forschen,  um Schwankungen auszugleichen und Infrastrukturen so weiterzuentwickeln, dass unterschiedliche Energieträger miteinander gekoppelt werden können. Das Programm hat ein 5-Jahres-Budget von rund 310 Millionen Euro. Das Helmholtz-Zentrum Berlin widmet sich insbesondere der Grundlagenforschung und Weiterentwicklung von elektrochemischen Energiespeichern oder Batterien.

Das Forschungsprogramm SVI gliedert sich in sechs Themen: Batterien und elektrochemische Speicher, Elektrolyse und Wasserstoff, synthetische Kohlenwasserstoffe, Brennstoffzellen, thermische Energiespeicher sowie Netze und Speicherintegration. Das HZB beteiligt sich am Thema Batterien und elektrochemische Speicher, in dem elektrochemische Speicherlösungen bis zur Anwendungsreife weiterentwickelt werden. Dabei geht es sowohl um stationäre als auch mobile Energiespeicher. Im Fokus stehen Batteriesysteme  wie Lithium-Ionen-Batterien, aber auch neue Konzepte, die noch nicht anwendungsreif sind, zum Beispiel Lithium-Schwefel-Batterie-Systeme, die als zukunftsträchtige Technologien gelten. Bislang liegt die beobachtete Leistungsfähigkeit jedoch noch weit unter den theoretisch erreichbaren Werten, auch ist die Zahl der Ladezyklen zu gering und Alterungseffekte erst wenig erforscht.

In dem neuen Programm, das vom Karlsruher Institut für Technologie (KIT) koordiniert wird, arbeiten fünf Helmholtz-Zentren zusammen: Neben dem KIT sind dies das Deutsche Zentrum für Luft- und Raumfahrt (DLR), Forschungszentrum Jülich (FZJ), Helmholtz Zentrum Dresden Rossendorf (HZDR) sowie das HZB.

Hier zur ausführlichen Presseinformation des KIT:


red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Science Highlight
    09.09.2024
    Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Die Materialklasse der MXene besitzt vielfältige Talente. Nun hat ein internationales Team um HZB-Chemikerin Michelle Browne gezeigt, dass MXene als Katalysatoren für die Sauerstoffentwicklungsreaktion bei der elektrolytischen Wasserspaltung geeignet sind. Dabei arbeiten sie stabiler und effizienter als die derzeit besten Metalloxid-Katalysatoren. Das Team hat die neuartigen Katalysatoren für die elektrolytische Aufspaltung von Wasser nun umfassend an der Berliner Röntgenquelle BESSY II und am Synchrotron Soleil, Frankreich, charakterisiert.
  • Grüner Wasserstoff: 'Künstliches Blatt' wird unter Druck besser
    Science Highlight
    31.07.2024
    Grüner Wasserstoff: 'Künstliches Blatt' wird unter Druck besser
    Wasserstoff kann in speziellen Anlagen über die elektrolytische Aufspaltung von Wasser erzeugt werden. Dabei ist eine Option die Verwendung von Photoelektroden, die Sonnenlicht in Spannung für die Elektrolyse umwandeln. Nun zeigt ein Forschungsteam am HZB, dass die Effizienz solcher photoelektrochemischen Zellen (PEC-Zellen) unter Druck noch deutlich steigen kann.
  • Grüner Wasserstoff mit direkter Meerwasser-Elektrolyse – Expert*innen warnen vor einem Hype
    Nachricht
    29.07.2024
    Grüner Wasserstoff mit direkter Meerwasser-Elektrolyse – Expert*innen warnen vor einem Hype
    Der Plan klingt bestechend: Neuartige Elektrolyseure sollen aus ungereinigtem Meerwasser mit Strom aus Sonne oder Wind direkt Wasserstoff erzeugen. Doch bei näherer Betrachtung zeigt sich, dass solche DSE-Elektrolyseure (DSE = Direct Seawater Electrolyzers) noch Jahre anspruchsvoller Forschung erfordern. Dabei sind neuartige Elektrolyseure gar nicht nötig, um Meerwasser für die Produktion von Wasserstoff zu verwenden – eine Entsalzung reicht aus, um Meerwasser für konventionelle Elektrolyseure aufzubereiten. In einem Kommentar im Fachjournal Joule vergleichen internationale Expert*innen Kosten und Nutzen der unterschiedlichen Ansätze und kommen zu einer klaren Empfehlung.