Details of a crucial reaction: Physicists uncover oxidation process of carbon monoxide on a ruthenium surface

This illustrates a moment captured for the first time in experiments at SLAC National Accelerator Laboratory. The CO-molecule and oxygen-atoms are attached to the surface of a ruthenium catalyst. When hit with an optical laser pulse, the reactants vibrate and bump into each other and the carbon atom forms a transitional bond with the lone oxygen center. The resulting CO<sub>2</sub> detaches and floats away.

This illustrates a moment captured for the first time in experiments at SLAC National Accelerator Laboratory. The CO-molecule and oxygen-atoms are attached to the surface of a ruthenium catalyst. When hit with an optical laser pulse, the reactants vibrate and bump into each other and the carbon atom forms a transitional bond with the lone oxygen center. The resulting CO2 detaches and floats away. © SLAC National Accelerator Laboratory

An international team has observed the elusive intermediates that form when carbon monoxide is oxidized on a hot ruthenium metal surface. They used ultrafast X-ray and optical laser pulses at the SLAC National Accelerator Laboratory, Menlo Park, California. The reaction between carbon monoxide and adsorbed oxygen atoms was initiated by heating the ruthenium surface with optical laser pulses. Directly afterwards, changes in the electronic structure of oxygen atoms were probed via X-ray absorption spectroscopy as they formed bonds with the carbon atoms.The observed transition states are consistent with density functional theory and quantum oscillator models.

The researchers were surprised to see so many of the reactants enter the transition state - and equally surprised to discover that only a small fraction of them go on to form stable carbon dioxide. The rest break apart again. "It's as if you are rolling marbles up a hill, and most of the marbles that make it to the top roll back down again," says Anders Nilsson, professor at the SLAC/Stanford SUNCAT Center for Interface Science and Catalysis and at Stockholm University, who led the research.

A team from the Institute of Methods and Instrumentation in Synchrotron Radiation Research from HZB has contributed in this research activities at SLAC sponsored by the Volkswagen-Foundation and the Helmholtz Virtual Institute “Dynamic Pathways in Multidimensional Landscapes” in which HZB and SLAC collaborate.

“These results help us to understand a really crucial reaction with high relevance for instance for environmental issues and to see which role catalysts may play”, Martin Beye of the HZB Team explains.

See full press release at SLAC-Website

Citation: H. Öström et al., Science, 12 February 2015 (10.1126/science.1261747)


arö/SLAC

  • Copy link

You might also be interested in

  • AI in Chemistry: Study Highlights Strengths and Weaknesses
    News
    04.06.2025
    AI in Chemistry: Study Highlights Strengths and Weaknesses
    How well does artificial intelligence perform compared to human experts? A research team at HIPOLE Jena set out to answer this question in the field of chemistry. Using a newly developed evaluation method called “ChemBench,” the researchers compared the performance of modern language models such as GPT-4 with that of experienced chemists. 

  • TH Wildau and Helmholtz Zentrum Berlin signed comprehensive cooperation
    News
    30.05.2025
    TH Wildau and Helmholtz Zentrum Berlin signed comprehensive cooperation
    On 21 May 2025, the Technical University of Applied Sciences Wildau (TH Wildau) and the Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), signed a comprehensive cooperation agreement. The aim is to further promote networking and cooperation, particularly in basic research, to increase the scientific excellence of both partners and to develop competence networks in research, teaching and the training of young scientists.

  • Green hydrogen: MXene boosts the effectiveness of catalysts
    Science Highlight
    29.05.2025
    Green hydrogen: MXene boosts the effectiveness of catalysts
    MXenes are adept at hosting catalytically active particles. This property can be exploited to create more potent catalyst materials that significantly accelerate and enhance the oxygen evolution reaction, which is one of the bottlenecks in the production of green hydrogen via electrolysis using solar or wind power. A detailed study by an international team led by HZB chemist Michelle Browne shows the potential of these new materials for future large-scale applications. The study is published in Advanced Functional Materials.