Distinguished Lectures at HZB: Prof. Jürgen Janek will give talk about the Materials Research for "Next Generation" Batteries

Prof. Dr. Jürgen Janek, Universität Gießen

Prof. Dr. Jürgen Janek, Universität Gießen

The search for new and the development of improved electrochemical energy storage systems stimulates world-wide research efforts in both academia and industry. While impressive improvements and cost reductions are still to be expected for lithium ionbatteries (LIB) and are part of enormous industrial efforts, more fundamental research aims for the creation and understanding of completely new cell types.

In order to provide an up-to-date overview on recent developments, the current status of LIB will be briefly reviewed, before major trends in the study of new cell types will be discussed. Essentially, three types of potential "next generation"; batteries will be considered in more detail: (a) alkali metal/ sulfur batteries (e.g. Li/S8), (b) alkali metal/oxygen batteries (e. g. Li/O2) and (c) solid state batteries (SSB).

The lecture will focus on major materials challenges on the one hand and to mechanistic questions from the physicochemical point of view on the other hand. The lecture will help to better judge a dynamic research field by evaluating the true chances and risks of new cell types.

23.02.2015 16:00 o clock
Lecture Hall at Lise-Meitner-Campus, Hahn-Meitner-Platz 1, 14109 Berlin

Please note that for entering HZB premises a valid ID card/passport is required.

sz

  • Copy link

You might also be interested in

  • Novel technique shines light on next-gen nanomaterials: how MXenes truly work
    Science Highlight
    01.10.2025
    Novel technique shines light on next-gen nanomaterials: how MXenes truly work
    Researchers have for the first time measured the true properties of individual MXene flakes — an exciting new nanomaterial with potential for better batteries, flexible electronics, and clean energy devices. By using a novel light-based technique called spectroscopic micro-ellipsometry, they discovered how MXenes behave at the single-flake level, revealing changes in conductivity and optical response that were previously hidden when studying only stacked layers. This breakthrough provides the fundamental knowledge and tools needed to design smarter, more efficient technologies powered by MXenes. 
  • New HZB magazine "Lichtblick" has been published
    News
    18.09.2025
    New HZB magazine "Lichtblick" has been published
    In the new issue, we introduce our new commercial managing director. We also show how important exchange is to us: science thrives on fruitful exchange with others. But dialogue with the public is also very important to us. Art can also create enriching access to science and build bridges. All these topics are covered in the new issue of Lichtblick.
  • Porous Radical Organic framework improves lithium-sulphur batteries
    Science Highlight
    15.09.2025
    Porous Radical Organic framework improves lithium-sulphur batteries
    A team led by Prof. Yan Lu, HZB, and Prof. Arne Thomas, Technical University of Berlin, has developed a material that enhances the capacity and stability of lithium-sulphur batteries. The material is based on polymers that form a framework with open pores (known as radical-cationic covalent organic frameworks or COFs). Catalytically accelerated reactions take place in these pores, firmly trapping polysulphides, which would shorten the battery life. Some of the experimental analyses were conducted at the BAMline at BESSY II.