Distinguished Lectures at HZB: Prof. Jürgen Janek will give talk about the Materials Research for "Next Generation" Batteries

Prof. Dr. Jürgen Janek, Universität Gießen

Prof. Dr. Jürgen Janek, Universität Gießen

The search for new and the development of improved electrochemical energy storage systems stimulates world-wide research efforts in both academia and industry. While impressive improvements and cost reductions are still to be expected for lithium ionbatteries (LIB) and are part of enormous industrial efforts, more fundamental research aims for the creation and understanding of completely new cell types.

In order to provide an up-to-date overview on recent developments, the current status of LIB will be briefly reviewed, before major trends in the study of new cell types will be discussed. Essentially, three types of potential "next generation"; batteries will be considered in more detail: (a) alkali metal/ sulfur batteries (e.g. Li/S8), (b) alkali metal/oxygen batteries (e. g. Li/O2) and (c) solid state batteries (SSB).

The lecture will focus on major materials challenges on the one hand and to mechanistic questions from the physicochemical point of view on the other hand. The lecture will help to better judge a dynamic research field by evaluating the true chances and risks of new cell types.

23.02.2015 16:00 o clock
Lecture Hall at Lise-Meitner-Campus, Hahn-Meitner-Platz 1, 14109 Berlin

Please note that for entering HZB premises a valid ID card/passport is required.

sz

  • Copy link

You might also be interested in

  • MXene as a frame for 2D water films shows new properties
    Science Highlight
    13.08.2025
    MXene as a frame for 2D water films shows new properties
    An international team led by Dr. Tristan Petit and Prof. Yury Gogotsi has investigated MXene with confined water and ions at BESSY II. In the MXene samples, a transition between localised ice clusters to quasi-two-dimensional water films was identified by increasing temperature. The team also discovered that the intercalated water structure drives a reversible transition from metallic to semiconducting behaviour of the MXene film. This could enable the development of novel devices or sensors based on MXenes.
  • Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Science Highlight
    12.08.2025
    Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Using a non-destructive method, a team at HZB investigated practical lithium-sulphur pouch cells with lean electrolyte for the first time. With operando neutron tomography, they could visualise in real-time how the liquid electrolyte distributes and wets the electrodes across multilayers during charging and discharging. These findings offer valuable insights into the cell failure mechanisms and are helpful to design compact Li-S batteries with a high energy density in formats relevant to industrial applications.
  • Self assembling monolayer can improve lead-free perovskite solar cells too
    Science Highlight
    04.08.2025
    Self assembling monolayer can improve lead-free perovskite solar cells too
    Tin perovskite solar cells are not only non-toxic, but also potentially more stable than lead-containing perovskite solar cells. However, they are also significantly less efficient. Now, an international team has succeeded in reducing losses in the lower contact layer of tin perovskite solar cells: The scienstists identified chemical compounds that self-assemble into a molecular layer that fits very well with the lattice structure of tin perovskites. On this monolayer, tin perovskite with excellent optoelectronic quality can be grown, which increases the performance of the solar cell.