BESSY II stellt auf Halbleiter-Hochfrequenzsender um
Der neue Halbleitersender: die Netzteilsektion befindet sich im linken Schrank (schwarz) und die drei HF-Einheiten stecken hinter den hellgrauen Schranktüren. Im rechten Rack ist die Steuerung untergebracht. © HZB
BESSY II besitzt vier Kavitäten, die mit einem elektromagnetischen Wechselfeld hoher Leistung angeregt werden, um die Energieverluste des Elektronenstrahls auszugleichen. Bislang sorgten so genannte Klystron-Röhrensender für die Anregung der Kavitäten mit möglichst sauberen 500 Megahertz. Doch inzwischen gibt es kaum noch Ersatzteile für solche Röhrensender. Ein HZB-Team hat daher den Shutdown genutzt, um zwei Klystron-Röhrensender durch moderne Halbleiter-Sender auszutauschen. Die restlichen Klystron-Röhrensender sollen bis Ende des Jahres ausgetauscht werden.
„Diese Technik ist zuerst am Synchrotron SOLEIL, Frankreich, entwickelt und eingesetzt worden. SOLEIL arbeitet jedoch mit Anregungsfrequenzen von 350 Megahertz. Wir dagegen arbeiten wie die meisten Synchrotronlichtquellen mit Frequenzen von 500 Megahertz. Dafür mussten wir das Konzept neu entwickeln. Die Entwicklung und Fertigung der Senderendstufen wurden von einer deutschen Firma (Cryoelectra) übernommen. Wir sind jetzt die erste Photonenquelle, die mit dieser Technik bei 500 Megahertz eine Anregungsleistung von 75 Kilowatt pro Sender erreicht“, erklärt Dr. Wolfgang Anders vom Institut SRF - Wissenschaft und Technologie.
Während die Klystron-Röhrensender Versorgungspannungen von 26 Kilovolt erforderten, arbeiten die Halbleitersender bei nur 50 Volt, benötigen aber höhere Stromstärken. Ein großer Vorteil ist die Energieeinsparung: Denn die Klystron-Röhrensender ziehen stets volle Leistung aus dem Netz, die Halbleiter-Sender regeln dies dagegen bedarfsgerecht und entnehmen dem Stromanschluss nur so viel Leistung wie der Elektronenstrahl abfordert, um Energieverluste auszugleichen. Außerdem haben die neuen Sender ein deutlich reduziertes Rauschen: die Kavität wird viel sauberer angeregt, was wiederum die Strahlqualität verbessert.
„Mein Team arbeitet seit drei Jahren daran, die neue Technik an BESSY II zu implementieren. Allein ein Jahr hat die umfangreiche Programmierung der Kontrollsystemanbindung und Signalverarbeitung der Solid-State Amplifier durch einen neu eingestellten Ingenieur gedauert. Nun besitzen wir eine sehr robuste Lösung, die vermutlich auch für andere Synchrotronlichtquellen interessant ist“, sagt Wolfgang Anders.
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=14191;sprache=enamp
- Link kopieren
-
Helmholtz-Nachwuchsgruppe zu Magnonen
Dr. Hebatalla Elnaggar baut am HZB eine neue Helmholtz-Nachwuchsgruppe auf. An BESSY II will die Materialforscherin sogenannte Magnonen in magnetischen Perowskit-Dünnschichten untersuchen. Sie hat sich zum Ziel gesetzt, mit ihrer Forschung Grundlagen für eine zukünftige Terahertz-Magnon-Technologie zu legen: Magnonische Bauelemente im Terahertz-Bereich könnten Daten mit einem Bruchteil der Energie verarbeiten, die moderne Halbleiterbauelemente benötigen, und das mit bis zu tausendfacher Geschwindigkeit.
Dr. Hebatalla Elnaggar will an BESSY II magnetische Perowskit-Dünnschichten untersuchen und damit die Grundlagen für eine künftige Magnonen-Technologie schaffen.
-
Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?
Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe.
-
Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
Noch immer ist die Hochtemperatursupraleitung nicht vollständig verstanden. Nun hat ein internationales Forschungsteam an BESSY II die Energie von Ladungsträgerpaaren in undotiertem La₂CuO₄ vermessen. Die Messungen zeigten, dass die Wechselwirkungsenergien in den potenziell supraleitenden Kupferoxid-Schichten deutlich geringer sind als in den isolierenden Lanthanoxid-Schichten. Die Ergebnisse tragen zum besseren Verständnis der Hochtemperatur-Supraleitung bei und könnten auch für die Erforschung anderer funktionaler Materialien relevant sein.