HZB stellt Forschung an Thermoelektrika vor

HZB-Gruppe bei der ICT/ECT2015. Von links nach rechts: Dr. Klaus Habicht (Leiter der Abteilung "Methoden zur Charakterisierung von Transportphänomenen in Energiematerialien"), Dr. Tommy Hofmann, Dr. Katharina Fritsch, Dr. Britta Willenberg, Dr. Katrin Meier-Kirchner

HZB-Gruppe bei der ICT/ECT2015. Von links nach rechts: Dr. Klaus Habicht (Leiter der Abteilung "Methoden zur Charakterisierung von Transportphänomenen in Energiematerialien"), Dr. Tommy Hofmann, Dr. Katharina Fritsch, Dr. Britta Willenberg, Dr. Katrin Meier-Kirchner

Die "International Conference on Thermoelectrics (ICT)" und die "European Conference on Thermoelectrics (ECT) " fanden in diesem Jahr vom 29.06.2015 bis zum 02.07.2015 in Dresden statt. Das HZB war bei diesem internationalen, multidisziplinären Treffen zum ersten Mal vertreten. Dabei präsentierte die HZB Abteilung "Methoden zur Charakterisierung von Transportphänomenen in Energiematerialien" um Dr. Klaus Habicht ihre Forschung mit zwei Vorträgen und einem Poster.

Dr. Tommy Hofmann präsentierte einen Vortrag zu den thermoelektrischen Eigenschaften von nanostrukturiertem Silizium, das im HZB über ein Ätzverfahren hergestellt und mittels makroskopischer Charakterisierungsmethoden und mikroskopischer Sonden untersucht wird. Dieses Material ist zurzeit von besonders großem Interesse, da Silizium im Gegensatz zu thermoelektrischen Materialien wie Bi2Te3 oder PbTe in der Natur reichlich vorhanden, nicht giftig und preiswert ist. Die Nanostrukturierung dieses einfachen Materials eröffnet neue Möglichkeiten, die thermoelektrische Effizienz des Materials zu erhöhen, indem zum Beispiel die thermische Leitfähigkeit durch künstlich eingebrachte Grenzflächen verringert wird. Die thermische Leitfähigkeit als makroskopische Größe ist wiederum mit dem Transport von Gitterschwingungen oder Phononen auf mikroskopischer Ebene verbunden, zu dem die Techniken der inelastischen Neutronenstreuung am Forschungsreaktor BER II des HZB einen idealen Zugang bieten.

In einem zweiten Vortrag gab Dr. Katharina Fritsch einen Überblick über die am HZB verfügbaren Methoden für die Forschung an Thermoelektrika und stellte beispielhaft ausgesuchte Forschungsprojekte der Abteilung vor. So wurden neben nanostrukturiertem Silizium Experimente zur Gitterdynamik und der elektronischen Bandstruktur in niedrig-dimensionalen thermoelektrischen Einkristallen sowie strukturelle Untersuchungen an Skutteruditverbindungen diskutiert.

Der Zusammenhang zwischen Struktur und Funktionalität in Skutteruditverbindungen war auch Thema des von Dr. Britta Willenberg präsentierten Posters mit dem Titel "Yb-filled skutterudites: a combined macroscopic and microscopic approach", welches die Ergebnisse eines Kooperationsprojekts der Abteilung mit dem Institut für Werkstoff-Forschung am Deutschen Zentrum für Luft- und Raumfahrt (DLR) in Köln vorstellte.

Insgesamt war die Konferenz eine gute Gelegenheit, Feedback zu unseren Forschungsprojekten zu erhalten und die experimentelle Infrastruktur sowie die Forschungsmöglichkeiten am HZB einem internationalen Publikum vorzustellen. Mit unserem Forschungsprogramm haben wir das Interesse von neuen möglichen Kooperationspartnern geweckt.

Klaus Habicht

  • Link kopieren

Das könnte Sie auch interessieren

  • Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Nachricht
    12.11.2025
    Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Dr. Susanne Nies leitet am HZB das Projekt Green Deal Ukraina, das den Aufbau eines nachhaltigen Energiesystems in der Ukraine unterstützt. Die Energieexpertin wurde nun auch in die wissenschaftliche Beratergruppe der Europäischen Kommission berufen, um im Zusammenhang mit der Netto-Null-Zielsetzung (DG GROW) regulatorische Belastungen aufzuzeigen und dazu zu beraten.
  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.
  • Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Science Highlight
    05.11.2025
    Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Noch immer ist die Hochtemperatursupraleitung nicht vollständig verstanden. Nun hat ein internationales Forschungsteam an BESSY II die Energie von Ladungsträgerpaaren in undotiertem La₂CuO₄ vermessen. Die Messungen zeigten, dass die Wechselwirkungsenergien in den potenziell supraleitenden Kupferoxid-Schichten deutlich geringer sind als in den isolierenden Lanthanoxid-Schichten. Die Ergebnisse tragen zum besseren Verständnis der Hochtemperatur-Supraleitung bei und könnten auch für die Erforschung anderer funktionaler Materialien relevant sein.