Gerd Schneider erhält Professur für Röntgenmikroskopie an der Humboldt-Universität zu Berlin

Prof. Dr. Gerd Schneider hält die Professur für Röntgenmikroskopie an der HU Berlin inne und leitet die gleichnamige Arbeitsgruppe am HZB.

Prof. Dr. Gerd Schneider hält die Professur für Röntgenmikroskopie an der HU Berlin inne und leitet die gleichnamige Arbeitsgruppe am HZB. © WISTA MANAGEMENT GmbH

Gerd Schneider (HZB) hat den Ruf auf eine W2-S-Professur "Röntgenmikroskopie" am Institut für Physik der Humboldt-Universität zu Berlin am 29. April 2015 angenommen. Die Professur ist verbunden mit der Leitung der Arbeitsgruppe „Röntgenmikroskopie“ am Helmholtz-Zentrum Berlin für Materialien und Energie. Mit seinem Team entwickelt der international anerkannte Experte neue Methoden und Anwendungen für die Röntgenmikroskopie, die entscheidende Beiträge für viele wissenschaftlichen Disziplinen – von der Material- und Energieforschung bis hin zu den Lebenswissenschaften – liefert.

Die Arbeitsgruppe um Gerd Schneider betreibt eines der modernsten Röntgenmikroskope der Welt, das in Kombination mit dem „weichen“ Röntgenlicht  von BESSY II räumliche Auflösungen bis zu zehn Nanometern erlaubt.

Röntgenmikroskopie ist ein unerlässliches Werkzeug für die Untersuchung von Materialien

Die Röntgenmikroskopie hat gegenüber der Licht- und Elektronenmikroskopie entscheidende Vorteile: Sie ermöglicht beispielsweise, dass Forscher Strukturen von Objekten dreidimensional betrachten können, – und das bei einer sehr hohen Auflösung von 10 Nanometern. „Während Forscher im Elektronenmikroskop nur sehr dünne Probe mit maximal etwa 0,1 µm Dicke betrachten können, erlaubt die Röntgenmikroskopie beispielsweise ganze Zellen mit Dicken von 10 µm zu untersuchen. „Gegenüber der modernen Super-Resolution Lichtmikroskopie, die Farbstoffmoleküle in Zellen zur Überwindung der Auflösungsgrenze nach Abbé benötigt, liefert die Röntgenmikroskopie einen direkten Blick auf die zellulären Strukturen ohne jegliche Färbung“, erläutert Prof. Dr. Gerd Schneider. Licht- und Röntgenmikroskopie erlauben ganze Zellen zu studieren, somit können durch korrelative Untersuchungen an einzelnen Zellen mittels Lichtmikroskopie bestimmte Proteine lokalisiert werden, deren Verteilung mittels Röntgenmikroskopie in einen strukturellen zellulären Kontext gebracht werden kann.

Da jedes chemische Element spezifische Röntgenabsorptionskanten besitzt, erlaubt die Röntgenmikroskopie eine elementspezifische Bestimmung der Bestandteile einer Probe. Auch chemische Bindungszustände lassen sich durch die Nahkantenspektroskopie gut abbilden. Weil die Elemente eine charakteristische Fluoreszenz unter Röntgenlicht besitzen, kann man zudem die räumliche Verteilung extrem niedriger Konzentrationen von Elementen in einer Probe gut ermitteln. Auf diese Weise liefert die Röntgenmikrokopie ein umfassendes Bild von Proben.  

Hochpräzise Rötgenoptiken entwickeln

Um eine möglichst hohe Auflösung in der Röntgenmikroskopie zu erzielen, werden hochpräzise Optiken benötigt, die den Röntgenstrahl fokussieren. Die Arbeitsgruppe um Gerd Schneider hat neben der Entwicklung von Röntgenmikroskopen maßgeblich zur Weiterentwicklung dieser Optiken, den Fresnel-Zonenplatten, beigetragen. Mit solchen 3D-Röntgenoptiken und modernen Synchrotronquellen wie BESSY II können Beiträge zu vielen wissenschaftliche Fragestellungen von den Grundlagen der Strukturbiologie bis hin zur Forschung an modernen Energiespeichern geleistet werden.

sz

  • Link kopieren

Das könnte Sie auch interessieren

  • MAX IV und BESSY II treiben Materialwissenschaften gemeinsam voran
    Nachricht
    17.06.2025
    MAX IV und BESSY II treiben Materialwissenschaften gemeinsam voran
    Das schwedische Synchrotron-Labor MAX IV und die Synchrotronstrahlungsquelle BESSY II des Helmholtz-Zentrum Berlin (HZB) haben am 16. Juni ein fünfjähriges Memorandum of Understanding (MoU) unterzeichnet. Das MoU schafft einen Rahmen für eine verstärkte Zusammenarbeit bei der operativen und technologischen Entwicklung in den Bereichen Beschleunigerforschung und -entwicklung, Strahlführungen und Optik, Endstationen und Probenumgebungen sowie Digitalisierung und Datenwissenschaft.
  • Michael Naguib als Humboldt-Forschungspreisträger am HZB
    Nachricht
    16.06.2025
    Michael Naguib als Humboldt-Forschungspreisträger am HZB
    Professor Michael Naguib von der Tulane University in den USA ist einer der Entdecker einer neuen Klasse von 2D-Materialien: MXene zeichnen sich durch eine blätterteigartige Struktur aus und bieten viele Anwendungsmöglichkeiten, beispielsweise bei der Erzeugung von grünem Wasserstoff oder als Speichermedium für elektrische Energie. Mit dem Humboldt-Forschungspreis im Jahr 2025 verstärkt Michael Naguib seine Zusammenarbeit mit Prof. Volker Presser am Leibniz-Institut für Neue Materialien in Saarbrücken und mit Dr. Tristan Petit am HZB.
  • KI-Einsatz in der Chemie: Studie zeigt Stärken und Schwächen
    Nachricht
    04.06.2025
    KI-Einsatz in der Chemie: Studie zeigt Stärken und Schwächen
    Wie gut ist künstliche Intelligenz im Vergleich zu menschlichen Fachleuten? Ein Forschungsteam des HIPOLE Jena hat diese Frage im Bereich der Chemie untersucht: Mithilfe eines neu entwickelten Prüfverfahrens namens „ChemBench“ verglichen die Forschenden die Leistung moderner Sprachmodelle wie GPT-4 mit der von erfahrenen Chemikerinnen und Chemikern.