Gerd Schneider erhält Professur für Röntgenmikroskopie an der Humboldt-Universität zu Berlin

Prof. Dr. Gerd Schneider hält die Professur für Röntgenmikroskopie an der HU Berlin inne und leitet die gleichnamige Arbeitsgruppe am HZB.

Prof. Dr. Gerd Schneider hält die Professur für Röntgenmikroskopie an der HU Berlin inne und leitet die gleichnamige Arbeitsgruppe am HZB. © WISTA MANAGEMENT GmbH

Gerd Schneider (HZB) hat den Ruf auf eine W2-S-Professur "Röntgenmikroskopie" am Institut für Physik der Humboldt-Universität zu Berlin am 29. April 2015 angenommen. Die Professur ist verbunden mit der Leitung der Arbeitsgruppe „Röntgenmikroskopie“ am Helmholtz-Zentrum Berlin für Materialien und Energie. Mit seinem Team entwickelt der international anerkannte Experte neue Methoden und Anwendungen für die Röntgenmikroskopie, die entscheidende Beiträge für viele wissenschaftlichen Disziplinen – von der Material- und Energieforschung bis hin zu den Lebenswissenschaften – liefert.

Die Arbeitsgruppe um Gerd Schneider betreibt eines der modernsten Röntgenmikroskope der Welt, das in Kombination mit dem „weichen“ Röntgenlicht  von BESSY II räumliche Auflösungen bis zu zehn Nanometern erlaubt.

Röntgenmikroskopie ist ein unerlässliches Werkzeug für die Untersuchung von Materialien

Die Röntgenmikroskopie hat gegenüber der Licht- und Elektronenmikroskopie entscheidende Vorteile: Sie ermöglicht beispielsweise, dass Forscher Strukturen von Objekten dreidimensional betrachten können, – und das bei einer sehr hohen Auflösung von 10 Nanometern. „Während Forscher im Elektronenmikroskop nur sehr dünne Probe mit maximal etwa 0,1 µm Dicke betrachten können, erlaubt die Röntgenmikroskopie beispielsweise ganze Zellen mit Dicken von 10 µm zu untersuchen. „Gegenüber der modernen Super-Resolution Lichtmikroskopie, die Farbstoffmoleküle in Zellen zur Überwindung der Auflösungsgrenze nach Abbé benötigt, liefert die Röntgenmikroskopie einen direkten Blick auf die zellulären Strukturen ohne jegliche Färbung“, erläutert Prof. Dr. Gerd Schneider. Licht- und Röntgenmikroskopie erlauben ganze Zellen zu studieren, somit können durch korrelative Untersuchungen an einzelnen Zellen mittels Lichtmikroskopie bestimmte Proteine lokalisiert werden, deren Verteilung mittels Röntgenmikroskopie in einen strukturellen zellulären Kontext gebracht werden kann.

Da jedes chemische Element spezifische Röntgenabsorptionskanten besitzt, erlaubt die Röntgenmikroskopie eine elementspezifische Bestimmung der Bestandteile einer Probe. Auch chemische Bindungszustände lassen sich durch die Nahkantenspektroskopie gut abbilden. Weil die Elemente eine charakteristische Fluoreszenz unter Röntgenlicht besitzen, kann man zudem die räumliche Verteilung extrem niedriger Konzentrationen von Elementen in einer Probe gut ermitteln. Auf diese Weise liefert die Röntgenmikrokopie ein umfassendes Bild von Proben.  

Hochpräzise Rötgenoptiken entwickeln

Um eine möglichst hohe Auflösung in der Röntgenmikroskopie zu erzielen, werden hochpräzise Optiken benötigt, die den Röntgenstrahl fokussieren. Die Arbeitsgruppe um Gerd Schneider hat neben der Entwicklung von Röntgenmikroskopen maßgeblich zur Weiterentwicklung dieser Optiken, den Fresnel-Zonenplatten, beigetragen. Mit solchen 3D-Röntgenoptiken und modernen Synchrotronquellen wie BESSY II können Beiträge zu vielen wissenschaftliche Fragestellungen von den Grundlagen der Strukturbiologie bis hin zur Forschung an modernen Energiespeichern geleistet werden.

sz

  • Link kopieren

Das könnte Sie auch interessieren

  • Helmholtz-Nachwuchsgruppe zu Magnonen
    Nachricht
    24.11.2025
    Helmholtz-Nachwuchsgruppe zu Magnonen
    Dr. Hebatalla Elnaggar baut am HZB eine neue Helmholtz-Nachwuchsgruppe auf. An BESSY II will die Materialforscherin sogenannte Magnonen in magnetischen Perowskit-Dünnschichten untersuchen. Sie hat sich zum Ziel gesetzt, mit ihrer Forschung Grundlagen für eine zukünftige Terahertz-Magnon-Technologie zu legen: Magnonische Bauelemente im Terahertz-Bereich könnten Daten mit einem Bruchteil der Energie verarbeiten, die moderne Halbleiterbauelemente benötigen, und das mit bis zu tausendfacher Geschwindigkeit.

    Dr. Hebatalla Elnaggar will an BESSY II magnetische Perowskit-Dünnschichten untersuchen und damit die Grundlagen für eine künftige Magnonen-Technologie schaffen.

  • Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe. 

  • Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Nachricht
    12.11.2025
    Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Dr. Susanne Nies leitet am HZB das Projekt Green Deal Ukraina, das den Aufbau eines nachhaltigen Energiesystems in der Ukraine unterstützt. Die Energieexpertin wurde nun auch in die wissenschaftliche Beratergruppe der Europäischen Kommission berufen, um im Zusammenhang mit der Netto-Null-Zielsetzung (DG GROW) regulatorische Belastungen aufzuzeigen und dazu zu beraten.