Wasserstoff aus Sonnenlicht: Neuer Effizienzrekord bei der künstlichen Photosynthese

Neuer Rekordwirkungsgrad: Die kleine Zelle wandelt rund 14 % der einfallenden Solarenergie in Wasserstoff um.

Neuer Rekordwirkungsgrad: Die kleine Zelle wandelt rund 14 % der einfallenden Solarenergie in Wasserstoff um. © M. May

Die Tandemzelle ist mit einem Katalysator beschichtet, an dem sich Wasserstoff bildet.

Die Tandemzelle ist mit einem Katalysator beschichtet, an dem sich Wasserstoff bildet. © M. May

Einem internationalen Team ist es gelungen, den Wirkungsgrad für die direkte solare Wasserspaltung jetzt deutlich zu steigern. Sie nutzen dafür eine Tandem-Solarzelle, deren Oberflächen sie gezielt modifizierten. Der neue Bestwert liegt bei 14 Prozent und damit deutlich über dem bisherigen Rekordwert von 12,4 Prozent, der damit seit 17 Jahren erstmals gebrochen wurde. An der Kooperation sind Forscher vom Institut für Solare Brennstoffe am Helmholtz-Zentrum Berlin, der TU Ilmenau, vom Fraunhofer-Institut für Solare Energiesysteme ISE in Freiburg und vom California Institute of Technology beteiligt. Die Ergebnisse sind in Nature Communications veröffentlicht.

Solarenergie ist zwar weltweit reichlich verfügbar, aber leider nicht stets und überall. Eine besonders interessante Speicherlösung ist die künstliche Photosynthese: Was jedes Blatt kann, nämlich Sonnenlicht in „chemische Energie“ umzuwandeln, das gelingt auch mit künstlichen Systemen auf Halbleiterbasis: dabei spaltet die elektrische Leistung, die Sonnenlicht in einzelnen Halbleiterkomponenten erzeugt, Wasser in Sauerstoff und Wasserstoff auf. Wasserstoff besitzt eine hohe Energiedichte, ist vielseitig verwendbar und könnte fossile Brennstoffe durchaus ersetzen. Zudem wird bei der Verbrennung von Wasserstoff kein klimaschädliches Kohlendioxid freigesetzt, sondern nur Wasser. Bisher scheitert die Herstellung von „Sonnen-Wasserstoff“ auf industrieller Ebene jedoch an den Kosten. Denn der Wirkungsgrad der künstlichen Photosynthese, also der Energiegehalt des Wasserstoffs bezogen auf den des Lichtes, ist noch immer einfach zu gering, um wirtschaftlich solar erzeugten Wasserstoff zu produzieren.

Jetzt getoppt: Bestmarke seit 17 Jahren

Die wichtigsten Wissenschaftsstandorte der Welt forschen daher seit vielen Jahren daran, die bestehende Bestmarke für künstliche Photosynthese von 12,4 Prozent, die seit 17 Jahren vom National Renewable Energy Laboratory in den USA gehalten wird, zu knacken.

Grundbaustein Tandemsolarzellen

Nun ist es einem Team aus der TU Ilmenau, dem HZB,  dem California Institute of Technology  sowie dem Fraunhofer ISE gelungen, diesen Rekordwert deutlich zu übertreffen. Erstautor Matthias May,  für die TU Ilmenau und das HZB-Institut für Solare Brennstoffe am Wirken, hat in seiner ausgezeichneten Promotionsarbeit dafür knapp hundert Proben bearbeitet und vermessen. Die Grundbausteine sind Tandemsolarzellen aus so genannten III-V-Halbleitern. Mit einem jetzt patentierten photoelektrochemischen Verfahren gelang es May, bestimmte Oberflächen dieser Halbleitersysteme so zu modifizieren, dass sie ihre Funktion bei der Wasserspaltung besser erfüllen.

Stabilität enorm verbessert

„Wir haben insbesondere die Aluminium-Indium-Phosphid-Schichten in situ elektronisch wie chemisch passiviert und damit effizient an die Katalysatorschicht für die Wasserstofferzeugung angekoppelt. Dabei konnten wir die Oberflächenzusammensetzung auf der Subnanometerskala kontrollieren“, erklärt May. Auch bei der Langzeitstabilität gelangen riesige Fortschritte: Anfänglich hielten die Proben nur wenige Sekunden durch, bevor ihre Leistung einbrach, nach rund einem Jahr Optimierung, bleiben sie über 40 Stunden lang stabil. Weitere Schritte in Richtung Langzeitstabilität (1000 Stunden als Ziel) sind schon in Vorbereitung.

Ziele in Sichtweite

„Prognosen zeigen, dass die Erzeugung von Wasserstoff aus Sonnenlicht mit Hocheffizienz-Halbleitern ab einer Effizienz von 15% wirtschaftlich konkurrenzfähig zu fossilen Energieträgern werden könnte; dies entspricht einem Preis pro Kilogramm Wasserstoff von etwa vier US-Dollar“, sagt Prof. Thomas Hannappel, Fachgebiet Photovoltaik an der TU Ilmenau, der die Arbeit mit betreut hat. Und Prof. Hans-Joachim Lewerenz vom Joint Center for Artificial Photosynthesis aus dem California Institute of Technology, der eng mit May zusammen gearbeitet hat, sagt: „Da sind wir nun schon nah dran. Wenn es uns nun gelingt, die Ladungsträger-Verluste an den Grenzflächen noch etwas stärker zu reduzieren, könnten wir mit diesem Halbleitersystem sogar über 17 % der einfallenden Solarenergie chemisch in Form von Wasserstoff speichern.“


Der wissenschaftliche Artikel ist im renommierten Wissenschaftsmagazin „Nature Communications“ publiziert: [May, M. M. et al. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat. Commun. 6:8286. Doi: 10.1038/ncomms9286 (2015)].

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.