Katalyseforschung verstärkt: Helmholtz-Zentrum Berlin ist am neu bewilligten Einstein-Zentrum für Katalyse beteiligt

Am HZB werden neue Methoden entwickelt, um die elektronische Struktur von katalytisch aktiven Molek&uuml;len zu untersuchen. </p>
<p>

Am HZB werden neue Methoden entwickelt, um die elektronische Struktur von katalytisch aktiven Molekülen zu untersuchen.

© HZB

Die Einstein-Stiftung fördert ab 2016 ein neues Einstein-Zentrum für Katalyse (EC²), an dem sich die Technische Universität Berlin (TU Berlin) und mehrere außeruniversitäre Einrichtungen aus Berlin beteiligen. Aus dem Helmholtz-Zentrum Berlin (HZB) wirkt Prof. Dr. Emad Aziz, Leiter des HZB-Instituts für Methoden der Materialforschung, am Aufbau der Einrichtung mit. Sein Team bringt insbesondere Expertise in der Analytik ultraschneller Prozesse bei katalytischen Reaktionen ein.

Katalyse ist zentrales Zukunftsthema, ob bei der Energiewende oder bei der Verarbeitung von Rohstoffen: Wenn wir in Zukunft Ressourcen effizienter und nachhaltiger nutzen wollen, sind hervorragende Katalysatoren unverzichtbar. Deshalb verstärkt auch das HZB die Katalyseforschung und arbeitet dabei gezielt mit Kooperationspartnern zusammen.

Im Einstein-Zentrum für Katalyse (EC²) sollen Methoden entwickelt werden, die einen tieferen Einblick in chemische und biologische Katalysatoren ermöglichen. Insbesondere die Dynamik von Katalyseprozessen will man damit besser verstehen. „Der Aufbau des institutionenübergreifenden Einstein-Zentrums für Katalyse ist ein echter Meilenstein für die Katalyseforschung in Berlin. Das HZB wird sich zukünftig noch stärker im Rahmen der Forschung an Energiematerialien in der Katalyseforschung engagieren“, sagt die wissenschaftliche Geschäftsführerin des HZB, Prof. Dr. Anke Kaysser-Pyzalla.

Das neue Einstein-Zentrum baut auf dem Exzellenzcluster  der TU Berlin „Unifying Concepts in Catalysis (UniCat)“ auf. Zentrale Partner des neuen Einstein-Zentrums sind neben dem HZB das Fritz-Haber-Institut der Max-Planck-Gesellschaft, das Leibniz-Institut für Molekulare Pharmakologie Berlin, das Leibniz-Institut für Analytische Wissenschaften Berlin, sowie das UniCat-BASF Joint Lab. Sprecher des neuen Einstein-Zentrums ist Prof. Dr. Matthias Drieß vom Fachgebiet Metallorganische Chemie und Anorganische Materialien der TU Berlin. „Um die Dynamik von aktiven Reaktionszentren mit hoher zeitlicher wie räumlicher Auflösung bestimmen zu können, brauchen wir das HZB mit seiner Spitzenanalytik an BESSY II als Partner“, sagt Drieß.

Das HZB-Institut für Methoden der Materialentwicklung entwickelt neue experimentelle Methoden, die Licht im Röntgenbereich oder im extremen UV-Bereich nutzen. „Damit stellen wir neue Werkzeuge bereit, um die elektronische Struktur von katalytischen Molekülen und die ultraschnellen Prozesse, die während der Katalyse ablaufen, unter realistischen Bedingungen wie Raumtemperatur oder Normaldruck zu untersuchen“, erklärt Aziz. „Auch Dr. Tristan Petit und Dr. Annika Bande, deren Gruppen durch ein Freigeist-Stipendium der Volkswagenstiftung gefördert werden, profitieren von dem großen Netzwerk zur Katalyseforschung in Berlin.“


Das neue Einstein-Zentrum soll ab Januar 2016 für zunächst fünf Jahre gefördert werden.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Science Highlight
    25.11.2025
    Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Ein Forschungsteam vom Helmholtz Zentrum Berlin (HZB) und dem Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI) hat herausgefunden, wie Karbonatmoleküle die Umwandlung von CO2 in nützliche Kraftstoffe durch Gold-Elektrokatalysatoren beeinflussen. Ihre Studie beleuchtet, welche molekularen Mechanismen bei der CO2-Elektrokatalyse und der Wasserstoffentwicklung eine Rolle spielen und zeigt Strategien zur Verbesserung der Energieeffizienz und der Selektivität der katalytischen Reaktion auf.