Katalyseforschung verstärkt: Helmholtz-Zentrum Berlin ist am neu bewilligten Einstein-Zentrum für Katalyse beteiligt

Am HZB werden neue Methoden entwickelt, um die elektronische Struktur von katalytisch aktiven Molek&uuml;len zu untersuchen. </p>
<p>

Am HZB werden neue Methoden entwickelt, um die elektronische Struktur von katalytisch aktiven Molekülen zu untersuchen.

© HZB

Die Einstein-Stiftung fördert ab 2016 ein neues Einstein-Zentrum für Katalyse (EC²), an dem sich die Technische Universität Berlin (TU Berlin) und mehrere außeruniversitäre Einrichtungen aus Berlin beteiligen. Aus dem Helmholtz-Zentrum Berlin (HZB) wirkt Prof. Dr. Emad Aziz, Leiter des HZB-Instituts für Methoden der Materialforschung, am Aufbau der Einrichtung mit. Sein Team bringt insbesondere Expertise in der Analytik ultraschneller Prozesse bei katalytischen Reaktionen ein.

Katalyse ist zentrales Zukunftsthema, ob bei der Energiewende oder bei der Verarbeitung von Rohstoffen: Wenn wir in Zukunft Ressourcen effizienter und nachhaltiger nutzen wollen, sind hervorragende Katalysatoren unverzichtbar. Deshalb verstärkt auch das HZB die Katalyseforschung und arbeitet dabei gezielt mit Kooperationspartnern zusammen.

Im Einstein-Zentrum für Katalyse (EC²) sollen Methoden entwickelt werden, die einen tieferen Einblick in chemische und biologische Katalysatoren ermöglichen. Insbesondere die Dynamik von Katalyseprozessen will man damit besser verstehen. „Der Aufbau des institutionenübergreifenden Einstein-Zentrums für Katalyse ist ein echter Meilenstein für die Katalyseforschung in Berlin. Das HZB wird sich zukünftig noch stärker im Rahmen der Forschung an Energiematerialien in der Katalyseforschung engagieren“, sagt die wissenschaftliche Geschäftsführerin des HZB, Prof. Dr. Anke Kaysser-Pyzalla.

Das neue Einstein-Zentrum baut auf dem Exzellenzcluster  der TU Berlin „Unifying Concepts in Catalysis (UniCat)“ auf. Zentrale Partner des neuen Einstein-Zentrums sind neben dem HZB das Fritz-Haber-Institut der Max-Planck-Gesellschaft, das Leibniz-Institut für Molekulare Pharmakologie Berlin, das Leibniz-Institut für Analytische Wissenschaften Berlin, sowie das UniCat-BASF Joint Lab. Sprecher des neuen Einstein-Zentrums ist Prof. Dr. Matthias Drieß vom Fachgebiet Metallorganische Chemie und Anorganische Materialien der TU Berlin. „Um die Dynamik von aktiven Reaktionszentren mit hoher zeitlicher wie räumlicher Auflösung bestimmen zu können, brauchen wir das HZB mit seiner Spitzenanalytik an BESSY II als Partner“, sagt Drieß.

Das HZB-Institut für Methoden der Materialentwicklung entwickelt neue experimentelle Methoden, die Licht im Röntgenbereich oder im extremen UV-Bereich nutzen. „Damit stellen wir neue Werkzeuge bereit, um die elektronische Struktur von katalytischen Molekülen und die ultraschnellen Prozesse, die während der Katalyse ablaufen, unter realistischen Bedingungen wie Raumtemperatur oder Normaldruck zu untersuchen“, erklärt Aziz. „Auch Dr. Tristan Petit und Dr. Annika Bande, deren Gruppen durch ein Freigeist-Stipendium der Volkswagenstiftung gefördert werden, profitieren von dem großen Netzwerk zur Katalyseforschung in Berlin.“


Das neue Einstein-Zentrum soll ab Januar 2016 für zunächst fünf Jahre gefördert werden.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Science Highlight
    12.08.2025
    Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Mit einer zerstörungsfreien Methode hat ein Team am HZB erstmals Lithium-Schwefel-Batterien im praktischen Pouchzellenformat untersucht, die mit besonders wenig Elektrolyt-Flüssigkeit auskommen. Mit operando Neutronentomographie konnten sie in Echtzeit visualisieren, wie sich der flüssige Elektrolyt während des Ladens und Entladens über mehrere Schichten verteilt und die Elektroden benetzt. Diese Erkenntnisse liefern wertvolle Einblicke in die Mechanismen, die zum Versagen der Batterie führen können, und sind hilfreich für die Entwicklung kompakter Li-S-Batterien mit hoher Energiedichte.
  • Selbst organisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Science Highlight
    04.08.2025
    Selbst organisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Zinn-Perowskit-Solarzellen sind nicht nur ungiftig, sondern auch potenziell stabiler als bleihaltige Perowskit-Solarzellen. Allerdings sind sie auch deutlich weniger effizient. Nun gelang einem internationalen Team eine deutliche Verbesserung:  Das Team identifizierte chemische Verbindungen, die von selbst eine molekulare Schicht bilden, welche sehr gut zur Gitterstruktur von Zinn-Perowskiten passt. Auf dieser Monolage lässt sich Zinn-Perowskit mit hervorragender optoelektronischer Qualität aufwachsen.
  • Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    Science Highlight
    23.07.2025
    Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.