Graphen als Frontkontakt für Silizium-Perowskit-Tandem-Solarzellen
Die Tandem-Solarzelle besteht (von unten nach oben, wie der Lichteinfall) aus der Perowskit-Schicht (schwarz, 200-300 nm), Spiro.OMeTAD (beige, 200-300 nm), Graphen (am Rand mit Gold kontaktiert), einem Glasträger sowie der aSi-cSi-Schicht (lila). © F. Lang / HZB
Ein Team aus dem Institut für Silizium-Photovoltaik des Helmholtz-Zentrums Berlin hat ein neues und raffiniertes Verfahren entwickelt, um die empfindliche Perowskit-Schicht erstmals mit Graphen zu beschichten. Mit anschließenden Messungen konnten sie belegen, dass Graphen ideal als Frontkontakt geeignet ist.
Nun hat eine Gruppe um Prof. Norbert Nickel eine neue Lösung vorgestellt: Dr. Marc Gluba und Doktorand Felix Lang haben ein Verfahren entwickelt, um die Perowskit-Schicht gleichmäßig mit Graphen zu bedecken; Graphen besteht aus Kohlenstoffatomen, die sich zu einem zweidimensionalen Netz aus „Bienenwaben“ anordnen und einen extrem dünnen Film bilden, der hoch leitfähig und vollkommen transparent ist.
Mehrstufiger Prozess:
Im ersten Schritt lassen die Wissenschaftler das Graphen aus einer Methanatmosphäre bei etwa 1000 Grad Celsius auf einer Kupferfolie aufwachsen. Für das weitere Vorgehen stabilisieren sie die empfindliche Schicht mit einem Lack, der das Graphen vor Zerreißen schützt. Denn im folgenden Schritt ätzt Felix Lang die Kupferfolie weg. So kann er im Anschluss die nun freistehende Graphen/Lack Schicht auf das Perovskit übertragen. „Dies wird normalerweise in Wasser gemacht, die Solarzelle fischt dann sozusagen die auf der Oberfläche schwimmende Graphenfolie auf. In diesem Fall ging das aber nicht, denn Perowskit ist höchst wasserempfindlich. Wir mußten daher eine andere Flüssigkeit finden, die das Perowskit nicht angreift und dennoch möglichst wasserähnlich ist“, erklärt Gluba.
Graphen ideal geeignet:
Dass die Graphenschicht in mehreren Hinsichten ein idealer Frontkontakt ist, zeigten die anschließenden Messungen: Wegen der nahezu vollständigen Transparenz geht kein Sonnenlicht für die Energieumwandlung verloren. Vor allem aber gibt es keine Einbußen bei der Leerlaufspannung, wie es beim Aufsputtern von ITO der Fall ist. „Diese Lösung ist in der Handhabung vergleichsweise einfach und günstig“, sagt Norbert Nickel. „Uns ist es damit gelungen, zum ersten Mal Graphen direkt auf eine Perowskit-Solarzelle zu übertragen und so eine hoch effiziente Tandemzelle mit einem transparenten Frontkontakt aus Graphen zu realisieren.“
Journal of Physical Chemistry Letters: Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells; Felix Lang, Marc A. Gluba, Steve Albrecht, Jörg Rappich, Lars Korte, Bernd Rech, and Norbert H. Nickel
J. Phys. Chem. Lett., 2015, 6 (14), pp 2745–2750
DOI: 10.1021/acs.jpclett.5b01177
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=14324;sprache=enamp
- Link kopieren
-
Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
Forschende haben erstmals die tatsächlichen Eigenschaften einzelner MXene-Flocken gemessen – einem spannenden neuen Nanomaterial mit Potenzial für bessere Batterien, flexible Elektronik und Geräte für saubere Energie. Mithilfe einer neuartigen lichtbasierten Technik – der spektroskopischen Mikroellipsometrie – haben sie herausgefunden, wie sich MXene auf der Ebene einzelner Flocken verhalten und dabei Veränderungen in der Leitfähigkeit und der optischen Reaktion aufgedeckt, die zuvor bei der Untersuchung gestapelter Schichten verborgen geblieben waren. Dieser Durchbruch liefert grundlegendes Wissen und Werkzeuge für die Entwicklung intelligenterer und effizienterer Technologien auf Basis von MXenen.
-
Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.
-
Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
Mit einer zerstörungsfreien Methode hat ein Team am HZB erstmals Lithium-Schwefel-Batterien im praktischen Pouchzellenformat untersucht, die mit besonders wenig Elektrolyt-Flüssigkeit auskommen. Mit operando Neutronentomographie konnten sie in Echtzeit visualisieren, wie sich der flüssige Elektrolyt während des Ladens und Entladens über mehrere Schichten verteilt und die Elektroden benetzt. Diese Erkenntnisse liefern wertvolle Einblicke in die Mechanismen, die zum Versagen der Batterie führen können, und sind hilfreich für die Entwicklung kompakter Li-S-Batterien mit hoher Energiedichte.