Mikro- und Makroskopische Veränderungen im Innern von Materialien filmen:

Die Skizze zeigt den Strahlverlauf durch die Probe an EDDI. Die Hochgeschwindigkeitskamera befindet sich über der Probe.

Die Skizze zeigt den Strahlverlauf durch die Probe an EDDI. Die Hochgeschwindigkeitskamera befindet sich über der Probe. © Marlen Paeplow/HZB

Die EDDI-Beamline an BESSY II leistet nun noch deutlich mehr: Seit Kurzem ist es möglich, auch hochaufgelöste dreidimensionale Bilder des mikroskopischen Aufbaus zu erhalten, und zwar mit einer Geschwindigkeit von bis zu vier Bildern pro Sekunde. Zeitgleich kann wie zuvor Röntgenbeugung (Energie-dispersive Diffraktion) durchgeführt werden, die Rückschlüsse auf die kristalline Struktur des Materials zulässt.

Die Beamline-Verantwortlichen Dr. Catalina Jiménez und Dr. Francisco García-Moreno haben diese Neuerung Ende 2013 vorgeschlagen und jetzt erfolgreich umgesetzt. Denn EDDI nutzt das komplette Energiespektrum der BESSY II-Röntgenpulse aus, um damit rasche Beugungsbilder der Proben zu erstellen, welche Aufschluss über den kristallinen Aufbau und den Abstand der Atome in der Probe geben.

Der neue Messkopf:

Ein Teil des Röntgenlichts geht dabei jedoch ungenutzt durch die Probe durch. Dieser Strahl kann nun über einen Szintillator-Kristall in sichtbares Licht umgewandelt und in einer Kamera aufgezeichnet werden. Durch Drehen der Probe erhält man dreidimensionale Abbildungen, die sogenannte Tomografie. Die Umsetzung war nicht trivial: So musste der Messkopf mit dem Szintillator-Kristall nahe der Probe Platz finden, ohne die Strahlführung der Diffraktion zu behindern. „Wir haben dafür eng mit der HZB-Werkstatt zusammengearbeitet“, berichtet García-Moreno.

Prozesse in Energiematerialien 

Der Probentisch ist drehbar und besitzt Schleifkontakte, sodass zum Beispiel Batterien während des Ladeprozesses untersucht werden können. Auch gibt es verschiedene Möglichkeiten, die Probe während der Messung aufzuheizen oder abzukühlen. „Damit können wir zum Beispiel beobachten, welche Veränderungen in Batterien beim Aufladen ablaufen, wie sich Wasserstoff in Stahl einlagert, aber auch viele andere Fragen an Energiematerialien untersuchen“, erklärt Catalina Jiménez.

Bis zu vier Tomografien pro Sekunde

Inzwischen hat das Team gezeigt, dass die Erweiterung sogar noch leistungsfähiger ist, als erwartet: „Wir sind ursprünglich davon ausgegangen, dass eine vollständige Tomografie einer Probe mehrere Sekunden dauert. Doch jetzt schaffen wir sogar gleichzeitig bis zu eine Tomografie und ein Diffraktionsspektrum pro Sekunde oder bis vier Tomografien pro Sekunde. Das heißt, wir können auch schnelle Veränderungen in Proben sehr gut beobachten, wir filmen sie und können sie mit den entsprechenden Phasen korrelieren“, sagt García-Moreno. Diese Option ist bereits in dem Userbetrieb aufgenommen worden und erste Nutzergruppen mit interessanten Fragestellungen haben sich schon angemeldet.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Helmholtz-Nachwuchsgruppe zu Magnonen
    Nachricht
    24.11.2025
    Helmholtz-Nachwuchsgruppe zu Magnonen
    Dr. Hebatalla Elnaggar baut am HZB eine neue Helmholtz-Nachwuchsgruppe auf. An BESSY II will die Materialforscherin sogenannte Magnonen in magnetischen Perowskit-Dünnschichten untersuchen. Sie hat sich zum Ziel gesetzt, mit ihrer Forschung Grundlagen für eine zukünftige Terahertz-Magnon-Technologie zu legen: Magnonische Bauelemente im Terahertz-Bereich könnten Daten mit einem Bruchteil der Energie verarbeiten, die moderne Halbleiterbauelemente benötigen, und das mit bis zu tausendfacher Geschwindigkeit.

    Dr. Hebatalla Elnaggar will an BESSY II magnetische Perowskit-Dünnschichten untersuchen und damit die Grundlagen für eine künftige Magnonen-Technologie schaffen.

  • Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe. 

  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.