„Flüstergalerie-Moden“ in Silizium-Nanokegeln verstärken die Lumineszenz

Nanostrukturen aus Silizium unter dem Rasterelektronenmikroskop. Der Durchmesser der Nanosäule beträgt 570 nm. Der Nanokegel dagegen verjüngt sich von seinem oberen Durchmesser 940 nm bis zu 360 nm an der Basis.

Nanostrukturen aus Silizium unter dem Rasterelektronenmikroskop. Der Durchmesser der Nanosäule beträgt 570 nm. Der Nanokegel dagegen verjüngt sich von seinem oberen Durchmesser 940 nm bis zu 360 nm an der Basis. © MPL

Eine Infrarotkamera erfasst die Lumineszenz (Abgabe von Licht) nach der optischen Anregung  der beiden Nanostrukturen.

Eine Infrarotkamera erfasst die Lumineszenz (Abgabe von Licht) nach der optischen Anregung der beiden Nanostrukturen. © MPL

Die Energiedichte des Lumineszenzlichts (hier 1027 nm) im Querschnitt der Nanostrukturen lässt sich numerisch modellieren. Nur im Nanokegel entstehen Flüstergalerie-Moden. Dadurch ist die Lumineszenz 200 mal stärker als in Nanosäulen.

Die Energiedichte des Lumineszenzlichts (hier 1027 nm) im Querschnitt der Nanostrukturen lässt sich numerisch modellieren. Nur im Nanokegel entstehen Flüstergalerie-Moden. Dadurch ist die Lumineszenz 200 mal stärker als in Nanosäulen. © MPL

Das Halbleitermaterial Silizium kann mit Hilfe von Nanostrukturierung ganz neue Talente entfalten. Dies zeigt nun ein Team am HZB-Institut „Nanoarchitekturen für die Energieumwandlung“ und am MPI für die Physik des Lichts. So geben Nanokegel aus Silizium nach Anregung mit sichtbarem Licht 200mal so viel Infrarotlumineszenz ab wie vergleichbar große Nanosäulen.  Modellierungen und experimentelle Ergebnisse zeigen: Die Kegel können durch ihre Geometrie Flüstergalerie-Moden für Infrarotwellen beherbergen, die die Silizium-Lumineszenz verstärken. Neue Anwendungen bis hin zu Nanolasern auf Siliziumbasis sind damit denkbar.

Silizium zählt zu den Standardmaterialien für Computerchips und Solarzellen. Doch obwohl die Eigenschaften von Silizium sehr gut bekannt sind,  gibt es bei Nanostrukturen doch Überraschungen. So hat nun ein Team um Prof. Dr. Silke Christiansen am HZB-Institut ‘ Nanoarchitekturen für die Energieumwandlung‘ sowie am MPI für die Physik des Lichts erstmals gezeigt, wie sich Licht in einem Nanokegel aus Silizium verhält. Ihre Modellrechnungen und Experimente  zeigen nun, warum diese geometrischen Strukturen weitaus besser als beispielsweise vergleichbar große Nanosäulen optisch zur Lumineszenz angeregt werden können. „Die Kegel wirken wie Flüstergalerien, nur nicht für Schall, sondern für Licht“, erklärt der Erstautor der Studie Sebastian Schmitt.  

Starke Lumineszenz in den Nanokegeln

Im Experiment bestrahlten Schmitt und sein Kollege George Sarau einzelne Nanosäulen und Nanokegel aus Silizium mit rotem Laserlicht  (660 Nanometer) und ermittelten die Strahlung, die die Probe als Lumineszenz zurückgab. Ohne Nanostrukturierung ist die Lumineszenz in Silizium sehr gering, da eine Anregung mit sichtbarem Licht in der Regel nicht dazu führt, dass Elektronen unter Abgabe von Infrarotlicht auf ihr ursprüngliches Niveau zurückfallen (indirekte Bandlücke).  Die Nanostrukturen dagegen wandeln einen weitaus größeren Teil des eingestrahlten Lichts in elektromagnetische Strahlung im nahen Infrarotbereich um, und dieser Effekt ist in den Nanokegeln 200mal stärker als in den Nanosäulen. „Dies ist die höchste Lumineszenz-Verstärkung, die je in einer Siliziumstruktur gemessen wurde“, sagt Schmitt. 

Flüstergalerien für das Licht

Dies kann das Team auch gut erklären: Denn mit numerischen Modellen lässt sich die Ausbreitung von elektromagnetischen Wellen in den verschiedenen Geometrien einer Silizium-Nanostruktur berechnen. Dabei zeigt sich: Weil der Querschnitt im Nanokegel mit der Höhe zunimmt, gibt es mehrere Ebenen, in denen sich das Infrarotlicht konstruktiv überlagert und verstärkt, es bilden sich stehende Wellen aus, die eine erhöhte Anregung von Elektronen und damit Abgabe von Lumineszenz ermöglichen. Dieser Effekt ist in Fachkreisen als Purcell-Effekt bekannt: Wenn sich eine Lichtquelle in einem optischen Resonator befindet, steigt die spontane Emission von Licht an. Die Nanokegel sind demnach hervorragende Resonatoren, eben optische Flüstergalerien für das Licht.

Designregeln für Nanostrukturen

„Solche Nanostrukturen aus einzelnen Kegeln sind nicht schwierig herzustellen“, erklärt Schmitt. Als neue Bauelemente wären sie sehr gut in die vorherrschenden CMOS-Halbleitertechnologien integrierbar, zum Beispiel als Dioden, optoelektronische Schalter und Lichtsensoren. In Verbindung mit einem geeigneten optisch aktiven Medium könnten diese Strukturen sogar Laserlicht produzieren, vermuten die Physiker.  „Wir können aus solchen Erkenntnissen einfache Design-Regeln für Halbleiternanostrukturen ableiten, um die Anzahl und Wellenlängen der gespeicherten Moden zu kontrollieren und damit auch die Lumineszenz“, sagt Silke Christiansen.  


Die Arbeit ist im renommierten Fachjournal Scientific Reports  erschienen. DOI: 10.1038/srep17089
"Observation of strongly enhanced photoluminescence from inverted cone-shaped silicon nanostuctures"
Sebastian W. Schmitt, George Sarau & Silke Christiansen

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.
  • Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Science Highlight
    01.10.2025
    Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Forschende haben erstmals die tatsächlichen Eigenschaften einzelner MXene-Flocken gemessen – einem spannenden neuen Nanomaterial mit Potenzial für bessere Batterien, flexible Elektronik und Geräte für saubere Energie. Mithilfe einer neuartigen lichtbasierten Technik – der spektroskopischen Mikroellipsometrie – haben sie herausgefunden, wie sich MXene auf der Ebene einzelner Flocken verhalten und dabei Veränderungen in der Leitfähigkeit und der optischen Reaktion aufgedeckt, die zuvor bei der Untersuchung gestapelter Schichten verborgen geblieben waren. Dieser Durchbruch liefert grundlegendes Wissen und Werkzeuge für die Entwicklung intelligenterer und effizienterer Technologien auf Basis von MXenen. 
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.