Common platform for macromolecular crystallography at European synchrotrons
MXcuBE Meeting from 1st - 2nd of December 2015 at Alba, Barcelona. The meetings make sure that the devenlopment of MXcuBE3 closly fits to the needs of the users.
Photo: Jordi Juanhuix/ALBA
Researchers use high-intensity X-ray light from synchrotron radiation sources to decipher the structures of biological molecules and thus the blueprints of life. A cooperation agreement has been effective since 2012 to establish common software standards at several European sources. Its aim: The eight synchrotrons involved want to create user-friendly, standardised conditions at the 30 experimental stations for macromolecular crystallography, which will greatly facilitate the work of research groups. In the new project “MXCuBE3”, the existing software platform is being adapted to include the latest developments in technology.
Many of the beamlines for macromolecular crystallography have been extensively modernised at various synchrotrons over the past few years. With new equipment, such as the latest high-resolution detectors, this opens up all new possibilities for experimentation. The common software platform MXCuBE2 now has to be adapted as well to keep up with this trend. The Curatorship has accordingly called for a new, overhauled version to be developed. The software solution MXCuBE3 will allow users to control their experiments via web applications. The upgrade will also guarantee MXCuBE3 will continue to run on computers with future operating systems, and will improve the connection to the sample database ISPyB.
Involved in the cooperation are the Helmholtz-Zentrum Berlin, the ESRF, the European Molecular Biology Laboratory, Global Phasing Limited, MAX-VI-Lab in Sweden, SOLEIL in France, ALBA in Spain and DESY.
Read up on this in more detail in the ESRF magazine
(sz)
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=14380;sprache=en
- Copy link
-
Technology Transfer Prize Ceremony 2025
This year’s Technology Transfer Prize Ceremony will take place on October 13 at 2 pm in the Lecture Hall, BESSY II Building, Adlershof.
-
Novel technique shines light on next-gen nanomaterials: how MXenes truly work
Researchers have for the first time measured the true properties of individual MXene flakes — an exciting new nanomaterial with potential for better batteries, flexible electronics, and clean energy devices. By using a novel light-based technique called spectroscopic micro-ellipsometry, they discovered how MXenes behave at the single-flake level, revealing changes in conductivity and optical response that were previously hidden when studying only stacked layers. This breakthrough provides the fundamental knowledge and tools needed to design smarter, more efficient technologies powered by MXenes.
-
Porous Radical Organic framework improves lithium-sulphur batteries
A team led by Prof. Yan Lu, HZB, and Prof. Arne Thomas, Technical University of Berlin, has developed a material that enhances the capacity and stability of lithium-sulphur batteries. The material is based on polymers that form a framework with open pores (known as radical-cationic covalent organic frameworks or COFs). Catalytically accelerated reactions take place in these pores, firmly trapping polysulphides, which would shorten the battery life. Some of the experimental analyses were conducted at the BAMline at BESSY II.