Optimale Bandlücke für hybride Tandem-Solarzelle aus Silizium und Perowskit

Schema des Aufbaus der Tandem-Zelle.

Schema des Aufbaus der Tandem-Zelle. © H. Cords/HZB

Tandemsolarzellen aus Silizium und Perowskit gelten als Hoffnungsträger für zukünftige hocheffiziente Solarmodule. Ein Team um den Perowskit-Pionier Henry Snaith, Universität Oxford, hat nun mit Bernd Rech und Lars Korte vom Helmholtz-Zentrum Berlin gezeigt, dass Wirkungsgrade von bis zu 30 Prozent für eine Perowskit-Silizium-Tandemzelle erreichbar sind. Sie haben dafür die chemische Zusammensetzung der Perowskit-Schicht systematisch variiert und so eine Bandlücke von 1,75 Elektronenvolt realisiert, die für die Energieumwandlung optimal ist. Ihre Arbeit ist nun in „Science“ publiziert.

Tandem-Solarzellen kombinieren unterschiedliche Solarzellen, um höhere Wirkungsgrade zu erzielen. Dabei ist die Kombination von Perowskit mit Silizium besonders interessant: Denn Perowskit wandelt Licht im sichtbaren Bereich in elektrische Energie um, während Silizium das Licht im nahinfraroten und infraroten Bereich nutzen kann (siehe auch IInfo vom 28. Oktober 2015). In Standard-Perowskit ist allerdings die so genannte Bandlücke mit ca. 1,6 Elektronenvolt noch etwas zu niedrig, um das Sonnenlicht optimal umzuwandeln.

Nun hat eine Kooperation zwischen dem Perowskit-Pionier Prof. Henry Snaith, University of Oxford, und den Silizium-Experten Prof. Bernd Rech und Dr. Lars Korte vom HZB-Institut für Siliziumphotovoltaik gezeigt, dass ein Wirkungsgrad von 30 % realistisch erreichbar scheint: Dafür haben sie gemeinsam eine Silizium-Perowskit-Tandemzelle konzipiert, bei der die beiden Zellen mechanisch aufeinander gestapelt und separat kontaktiert sind.

Das HZB-Team hat die Silizium-Zelle hergestellt, die die untere der beiden Zellen im Tandem bildet. Dem Team in Oxford gelang es, die Bandlücke des Perowskits auf 1,75 eV zu erhöhen, indem sie die chemische Zusammensetzung der Perowskit-Schicht systematisch variierten. Gleichzeitig konnten sie dadurch auch die chemische und thermische Stabilität der empfindlichen Perowskit-Schicht deutlich steigern. 

Science 8 January 2016: Vol. 351 no. 6269 pp. 151-155

A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells

DOI:10.1126/science.aad5845

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Science Highlight
    12.08.2025
    Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Mit einer zerstörungsfreien Methode hat ein Team am HZB erstmals Lithium-Schwefel-Batterien im praktischen Pouchzellenformat untersucht, die mit besonders wenig Elektrolyt-Flüssigkeit auskommen. Mit operando Neutronentomographie konnten sie in Echtzeit visualisieren, wie sich der flüssige Elektrolyt während des Ladens und Entladens über mehrere Schichten verteilt und die Elektroden benetzt. Diese Erkenntnisse liefern wertvolle Einblicke in die Mechanismen, die zum Versagen der Batterie führen können, und sind hilfreich für die Entwicklung kompakter Li-S-Batterien mit hoher Energiedichte.
  • Selbst organisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Science Highlight
    04.08.2025
    Selbst organisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Zinn-Perowskit-Solarzellen sind nicht nur ungiftig, sondern auch potenziell stabiler als bleihaltige Perowskit-Solarzellen. Allerdings sind sie auch deutlich weniger effizient. Nun gelang einem internationalen Team eine deutliche Verbesserung:  Das Team identifizierte chemische Verbindungen, die von selbst eine molekulare Schicht bilden, welche sehr gut zur Gitterstruktur von Zinn-Perowskiten passt. Auf dieser Monolage lässt sich Zinn-Perowskit mit hervorragender optoelektronischer Qualität aufwachsen.
  • Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Nachricht
    24.07.2025
    Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Der Batterieforscher Prof. Dr. Philipp Adelhelm wird mit dem Berliner Wissenschaftspreis 2024 ausgezeichnet.  Er ist Professor am Institut für Chemie der Humboldt-Universität zu Berlin (HU) und leitet eine gemeinsame Forschungsgruppe der HU und des Helmholtz-Zentrums Berlin (HZB). Der Materialwissenschaftler und Elektrochemiker forscht zur Entwicklung nachhaltiger Batterien, die eine Schlüsselrolle für das Gelingen der Energiewende spielen. International zählt er zu den führenden Expert*innen auf dem Gebiet der Natrium-Ionen-Batterien.