Themen: Beschleunigerphysik (172) BESSY II (263)

Science Highlight    20.01.2016

Elektronenbahnen in komplexen Magnetfeldern jetzt schneller berechenbar

Vertikaler Schnitt durch einen Quadrupol-Magneten: Schwarz: Feldverteilung in einem definierten vertikalen Abstand zur Mittelebene. Magenta: Elektronenbahnen mit unterschiedlichen Startbedingungen.
Copyright: C. Rethfeldt/HZB

Um künftig noch leistungsstärkere Synchrotronquellen zu konzipieren, ist es wichtig, die Elektronenbahnen  in komplexen Magnetstrukturen mit hoher Präzision zu simulieren. Dies erfordert jedoch sehr lange Rechenzeiten. Nun hat ein Team am HZB die Elektronenbahnen mit einem neuen Algorithmus simuliert und damit die erforderliche Rechenzeit verkürzen können. Dies beschreiben sie in Physical Review Special Topics Accelerator & Beams.

In einem Elektronenspeicherring wie BESSY II laufen Elektronen mit nahezu Lichtgeschwindigkeit  durch komplexe magnetische Konfigurationen, die sie immer wieder in Richtung des idealen Orbits lenken. Sie fokussieren den Strahl ähnlich wie optische Linsen das Licht. Um das Verhalten der Elektronen im Speicherring zu simulieren, muss ihre Bahn durch die Magnetanordnungen über viele tausende von Runden verfolgt werden;  jedes Mal sind ihre Bahnen dabei etwas unterschiedlich, so dass eine präzise Simulation der Felder und der Bahnen lange Rechenzeit erfordert.

Ein Team aus der HZB-Abteilung Undulatoren und dem HZB-Institut Beschleunigerphysik hatte bereits 2011 in einem ersten Papier [2] eine neuartige Methode publiziert, um die Rechenzeit für Bahnen in komplexen Undulator-Feldern erheblich zu verkürzen. Der Algorithmus wurde in den Bahnverfolgungscode „elegant“ eingebaut, der an der  Advanced Photon Source / Argonne  entwickelt wurde und weltweit genutzt wird. Das Softwarepaket ist frei verfügbar.

Nun konnten Malte Titze, Johannes Bahrdt und Godehard Wüstefeld diese Methode erweitern und zeigen, wie sie auch für eine weite Klasse von dreidimensionalen Magneten, hier insbesondere Quadrupole, Sextupole usw., angewendet werden kann [1].

 „Die Methode liefert sehr präzise Ergebnisse, auch für sich rasch ändernde Felder besonders im Randbereich dieser Magnete“, sagt Malte Titze, der inzwischen am CERN forscht. „Solche Rechenmethoden sind für speicherringbasierte Lichtquellen der vierten Generation, insbesondere für beugungsbegrenzte Quellen, von großer Bedeutung, da hier einerseits kombinierte Magnete (z.B. Dipol plus integriertem Quadrupol) zur Anwendung kommen und andererseits Randfeldeffekte und die magnetische Wechselwirkung zwischen den Magneten eine wichtige Rolle spielen, “ erklärt Johannes Bahrdt. „Dies hat eine besondere Relevanz hinsichtlich der Nachfolgemaschine von BESSY II“. Die Physiker beschreiben die Methodik in der Fachzeitschrift:  Physical Review Special Topics Accelerator & Beams.


[1] M. Titze, J. Bahrdt, G. Wüstefeld, „Symplectic tracking through straight three dimensional fields by a method of generating functions“

DOI: 10.1103/PhysRevAccelBeams.19.014001

[2] J. Bahrdt, G. Wüstefeld, “Symplectic tracking and compensation of dynamic field integrals in complex undulator structures”, Phys. Rev. ST Accel. Beams 14, 040703 (2011).

arö


           



Das könnte Sie auch interessieren
  • <p>Mit R&ouml;ntgenlicht (blau) werden Wassermolek&uuml;le angeregt. Aus dem abgestrahlten Licht (lila) lassen sich Informationen &uuml;ber Wasserstoffbr&uuml;cken gewinnen.</p>SCIENCE HIGHLIGHT      20.02.2019

    Wasser ist homogener als gedacht

    Um die bekannten Anomalien in Wasser zu erklären, gehen manche Forscher davon aus, dass Wasser auch bei Umgebungsbedingungen aus einer Mischung von zwei Phasen besteht. Neue röntgenspektroskopische Analysen an BESSY II, der ESRF und der Swiss Light Source zeigen jedoch, dass dies nicht der Fall ist. Bei Raumtemperatur und normalem Druck bilden die Wassermoleküle ein fluktuierendes Netz mit durchschnittlich je 1,74 ± 2.1%  Donator- und Akzeptor-Wasserstoffbrückenbindungen pro Molekül, die eine tetrahedrische Koordination zwischen nächsten Nachbarn ermöglichen. [...]


  • <p>&Uuml;ber 250 geladene G&auml;ste feierten am 18. Februar im TIPI am Kanzleramt das zehnj&auml;hrige Jubil&auml;um des HZB.</p>NACHRICHT      18.02.2019

    10 Jahre Helmholtz-Zentrum Berlin: Ein starker Partner in der Wissenschaftslandschaft

    Das Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) feiert am 18. Februar 2019 mit rund 250 geladenen Gästen aus Wissenschaft, Politik und Wirtschaft sein zehnjähriges Bestehen. Das Zentrum zählt zu den Top-Institutionen weltweit und leistet einen entscheidenden Beitrag für Berlin als Standort der Spitzenforschung. Dies betont Michael Müller, Regierender Bürgermeister von Berlin, anlässlich des Jubiläums. [...]


  • <p>Die Kegel symbolisieren die Magnetisierung der Nanopartikel auf dem Bariumtitanat-Gitter. Ohne elektrisches Feld ist ihre Magnetisierung ungeordnet. &nbsp;</p>SCIENCE HIGHLIGHT      14.02.2019

    Grüne Spintronik: Mit Spannung Superferromagnetismus erzeugen

    Ein HZB-Team hat zusammen mit internationalen Partnern an der Lichtquelle BESSY II ein neues Phänomen in Eisen-Nanokörnern auf einem ferroelektrischen Substrat beobachtet: Die magnetischen Momente der Eisenkörner richten sich superferromagnetisch aus, sobald eine elektrische Spannung anliegt. Der Effekt funktioniert bei Raumtemperatur und könnte zu neuen Materialien für IT-Bauelemente und Datenspeicher führen, die weniger Energie verbrauchen. [...]




Newsletter