A Fast Way of Electron Orbit Simulation in Complex Magnetic Fields

Vertical cut through a quadrupole magnet: Black: Field distribution at a fixed vertical distance to the midplane. Magenta: Electron trajectories for various initial coordinates.

Vertical cut through a quadrupole magnet: Black: Field distribution at a fixed vertical distance to the midplane. Magenta: Electron trajectories for various initial coordinates. © C. Rethfeldt/HZB

The design  of  advanced synchrotron radiation sources requires precise  algorithms  for the  simulation of electron trajectories in  complex magnetic fields. However, multi-parameter studies can  be very time consuming. Now, a team of the HZB has developed a new algorithm which significantly reduces the computation time.  This approach is now published in the renowned journal “Physical Review Special Topics Accelerator & Beams”.

In a storage ring like BESSY II electrons circulate nearly with the speed of light passing complex magnetic structures. These magnets guide the electron beam and focus it on the ideal orbit. They are comparable to optical lenses which focus the light. To evaluate the stability of the electron trajectories in the magnetic fields, several thousands of turns need to be simulated.  After each revolution the trajectories are slightly different, passing the magnets at slightly different positions. These combined and complex orbit and field calculations require a precise algorithm which could easily result in time consuming simulations.

Already in 2011, a team out of the HZB undulator group and of the HZB-institute of accelerator physics has published  a first paper of a new simulation algorithm [2], which drastically speeds up the simulation time for trajectories in complex undulator fields. This simulation routine was implemented into the public domain code “elegant“ of the Advanced Photon source / Argonne, and it is available, worldwide.

Now, Malte Titze together with Johannes Bahrdt and Godehard Wüstefeld could extend this method to another important class of  three dimensional magnets: multipoles such as  quadrupoles or sextupoles  [1].

“The paper demonstrates, that this method yields very precise results, particularly within the fast changing fringing fields of the magnets”, Malte Titze explains. He is now engaged in research activities at CERN. “Such simulation methods are of great  interest for future light sources, especially for diffraction limited storage rings, which may include combined function magnets and exhibit significant cross talking between neighboring magnets” comments Johannes Bahrdt. “This is of clear relevance for a successor of BESSY II”. The scientists describe their methods in the renowned journal of “Physical Review Special Topics Accelerator & Beams“.


[1] M. Titze, J. Bahrdt, G. Wüstefeld, „Symplectic tracking through straight three dimensional fields by a method of generating functions“

DOI: 10.1103/PhysRevAccelBeams.19.014001

[2] J. Bahrdt, G. Wüstefeld, “Symplectic tracking and compensation of dynamic field integrals in complex undulator structures”, Phys. Rev. ST Accel. Beams 14, 040703 (2011).

arö

  • Copy link

You might also be interested in

  • Green fabrication of hybrid materials as highly sensitive X-ray detectors
    Science Highlight
    08.05.2025
    Green fabrication of hybrid materials as highly sensitive X-ray detectors
    New bismuth-based organic-inorganic hybrid materials show exceptional sensitivity and long-term stability as X-ray detectors, significantly more sensitive than commercial X-ray detectors. In addition, these materials can be produced without solvents by ball milling, a mechanochemical synthesis process that is environmentally friendly and scalable. More sensitive detectors would allow for a reduction in the radiation exposure during X-ray examinations.
  • Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    News
    07.05.2025
    Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    The Federal Institute for Materials Research and Testing (BAM), the Helmholtz-Zentrum Berlin (HZB), and Humboldt University of Berlin (HU Berlin) have signed a memorandum of understanding (MoU) to establish the Berlin Battery Lab. The lab will pool the expertise of the three institutions to advance the development of sustainable battery technologies. The joint research infrastructure will also be open to industry for pioneering projects in this field.
  • BESSY II: Insight into ultrafast spin processes with femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Insight into ultrafast spin processes with femtoslicing
    An international team has succeeded at BESSY II for the first time to elucidate how ultrafast spin-polarised current pulses can be characterised by measuring the ultrafast demagnetisation in a magnetic layer system within the first hundreds of femtoseconds. The findings are useful for the development of spintronic devices that enable faster and more energy-efficient information processing and storage. The collaboration involved teams from the University of Strasbourg, HZB, Uppsala University and several other universities.