Solare Brennstoffe: Raffinierte Schutzschicht für das „Künstliche Blatt”

Die Skizze zeigt den Aufbau der Probe: die n-dotierte Siliziumschicht (schwarz), eine dünne Siliziumoxidschicht (grau), eine Zwischenschicht (gelb) und schließlich die Schutzschicht (braun), auf der die Katalysatorpartikel mit dem Elektrolyten (grün) in Kontakt kommen.

Die Skizze zeigt den Aufbau der Probe: die n-dotierte Siliziumschicht (schwarz), eine dünne Siliziumoxidschicht (grau), eine Zwischenschicht (gelb) und schließlich die Schutzschicht (braun), auf der die Katalysatorpartikel mit dem Elektrolyten (grün) in Kontakt kommen. © M. Lublow

Ein Team am HZB-Institut für Solare Brennstoffe hat ein Verfahren entwickelt, um empfindliche Halbleiter für die solare Wasserspaltung („Künstliches Blatt“) mit einer organischen transparenten Schutzschicht zu versehen. Die extrem dünne Schutzschicht aus vernetzten Kohlenstoffatomen ist stabil und leitfähig und mit Katalysator-Nanopartikeln aus Metalloxiden bedeckt. Diese beschleunigen die Spaltung von Wasser unter Lichteinstrahlung. Die so hergestellte Hybridstruktur zeigt als Photoanode für die Sauerstoffentwicklung Stromdichten von über als 15 mA/cm2. Die Ergebnisse sind nun in Advanced Energy Materials veröffentlicht.

Das Team arbeitete mit Proben aus Silizium, einem n-dotierten Halbleitermaterial, das als einfache Solarzelle bei Beleuchtung eine Spannung liefert. Die Materialwissenschaftlerin Anahita Azarpira, Doktorandin in der Gruppe von Dr. Thomas Schedel-Niedrig, präparierte diese Proben so, dass sich zunächst Ketten von Kohlenstoff-Wasserstoff-Verbindungen auf der Siliziumoberfläche bildeten. „In einem weiteren Schritt habe ich dann Nanopartikel aus dem Katalysator Rutheniumdioxid abgeschieden“, erklärt Azarpira. Als Ergebnis bildete sich eine leitfähige und stabile Polymerstruktur von nur drei bis vier Nanometern Dicke. Dabei waren die Reaktionen in der elektrochemischen Präparationszelle überaus kompliziert und konnten erst jetzt am HZB aufgeschlüsselt werden.

Mit diesem neuen Verfahren werden die Rutheniumdioxid-Partikel zum ersten Mal doppelt genutzt: Zuerst sorgen sie dafür, dass eine effektive organische Schutzschicht entsteht. Damit werden die üblicherweise sehr komplizierten Verfahren zur Herstellung von Schutzschichten wesentlich vereinfacht. Erst dann erledigen sie ihren „normalen Job“ und beschleunigen die Aufspaltung von Wasser in Sauerstoff und Wasserstoff.

Organische Schutzschicht kombiniert ausgezeichnete Stabilität und hohe Stromdichte

Die so geschützte Silizium-Elektrode erreicht Stromdichten von über 15 mA/cm2. Dies belegt, dass die Schutzschicht eine hohe Leitfähigkeit aufweist, was keineswegs selbstverständlich für eine organische Schicht ist. Während der gesamten Messdauer von 24 Stunden beobachteten die Forscher außerdem keine Degradation der Zelle, die Ausbeute blieb stabil. Bemerkenswert ist, dass bisher ein ganz anderes Material als organische Schutzschicht favorisiert wurde: Graphen. Dieses vieldiskutierte zweidimensionale Material konnte jedoch bisher nur eingeschränkt für elektrochemische Prozesse eingesetzt werden, während die am HZB entwickelte Schutzschicht sehr gut funktioniert. „Weil sich das neuartige Material sowie das Abscheidungsverfahren auch für andere Anwendungen eignen könnten, streben wir nun internationale Schutzrechte an“, sagt Teamleiter Thomas Schedel-Niedrig.


“Sustained Water Oxidation by Direct Electrosynthesis of Ultrathin Organic Protection Films on Silicon”, Anahita Azarpira, Thomas Schedel-Niedrig, H.-J. Lewerenz, Michael Lublow* in Advanced Energy Materials DOI: 10.1002/ aenm.201502314

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Nachricht
    22.10.2025
    Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Wir freuen uns sehr und gratulieren unserer studentischen Mitarbeiterin Luca Raschke zum erfolgreich abgeschlossenen Masterstudium der Regenerativen Energien an der Hochschule für Technik und Wirtschaft Berlin – und das mit Auszeichnung!
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.