HZB erhält Fördermittel, um den Herstellungsprozess für CIGS-Solarzellen zu optimieren

Sebastian Schmidt zeigt eines der CIGS-Module.

Sebastian Schmidt zeigt eines der CIGS-Module. © HZB

Das Helmholtz-Zentrum Berlin (HZB) hat ein großes Projekt eingeworben, um mit Partnern aus Deutschland und den Niederlanden den Herstellungsprozess für CIGS-Dünnschichtsolarzellen weiter zu optimieren. Der vakuumfreie Prozess kommt ohne giftige Gase aus und wird günstiger. Das Projekt läuft unter dem Akronym ACCESS-CIGS, das für „Atmospheric Cost Competitive Elemental Sulpho-Selenisation for CIGS” steht.

Am Photovoltaik-Kompetenzzentrum (PVcomB) des HZB, in Adlershof entwickeln Expertinnen und Experten einen innovativen Prozess, um CIGS-Schichten für die Anwendung in Dünnschicht-Solarzellen herzustellen. CIGS steht dabei für die Verbindung Cu(In,Ga)(Se,S)2 aus Kupfer, Indium, Gallium, Selen und Schwefel. Die polykristalline CIGS Solarzellentechnologie zeichnet sich insbesondere durch hohe Effizienzen auf Zellniveau und hohe Energieerträge für Solarmodule aus.

Der am PVcomB verfolgte Prozess benötigt kein Vakuum und verwendet elementares Selen und Schwefel, um die metallische Vorläuferschicht aus Kupfer-Indium-Gallium in eine polykristalline CIGS-Halbleiterschicht umzuwandeln. Dies hat den Vorteil, dass der Prozess ohne den Einsatz von giftigen Gasen wie Selenwasserstoff (H2Se) auskommt und somit Produktionskosten spart. Dadurch könnte die Herstellung von CIGS-Solarmodulen deutlich günstiger werden und so die Technologie in der derzeit angespannten Marktlage unterstützen.

Dem PVcomB ist es gelungen, innerhalb der SOLAR-ERA.NET Initiative Fördermittel in Höhe von 800.000 € einzuwerben. Im Rahmen eines binationalen europäischen Konsortiums werden sie damit in den nächsten zwei Jahren technologieorientiert daran arbeiten, die Selenversorgung zu optimieren und ihren Einfluss auf den Kristallisationsprozess zu verbessern.

Das Projekt wird in Zusammenarbeit mit den Firmen TNO/Solliance und Smit Thermal Solutions, beide ansässig in Eindhoven in den Niederlanden, und mit der Firma Dr. Eberl MBE Komponenten aus Weil der Stadt auf deutscher Seite, durchgeführt.

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Science Highlight
    12.08.2025
    Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Mit einer zerstörungsfreien Methode hat ein Team am HZB erstmals Lithium-Schwefel-Batterien im praktischen Pouchzellenformat untersucht, die mit besonders wenig Elektrolyt-Flüssigkeit auskommen. Mit operando Neutronentomographie konnten sie in Echtzeit visualisieren, wie sich der flüssige Elektrolyt während des Ladens und Entladens über mehrere Schichten verteilt und die Elektroden benetzt. Diese Erkenntnisse liefern wertvolle Einblicke in die Mechanismen, die zum Versagen der Batterie führen können, und sind hilfreich für die Entwicklung kompakter Li-S-Batterien mit hoher Energiedichte.
  • Selbst organisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Science Highlight
    04.08.2025
    Selbst organisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Zinn-Perowskit-Solarzellen sind nicht nur ungiftig, sondern auch potenziell stabiler als bleihaltige Perowskit-Solarzellen. Allerdings sind sie auch deutlich weniger effizient. Nun gelang einem internationalen Team eine deutliche Verbesserung:  Das Team identifizierte chemische Verbindungen, die von selbst eine molekulare Schicht bilden, welche sehr gut zur Gitterstruktur von Zinn-Perowskiten passt. Auf dieser Monolage lässt sich Zinn-Perowskit mit hervorragender optoelektronischer Qualität aufwachsen.
  • Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Nachricht
    24.07.2025
    Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Der Batterieforscher Prof. Dr. Philipp Adelhelm wird mit dem Berliner Wissenschaftspreis 2024 ausgezeichnet.  Er ist Professor am Institut für Chemie der Humboldt-Universität zu Berlin (HU) und leitet eine gemeinsame Forschungsgruppe der HU und des Helmholtz-Zentrums Berlin (HZB). Der Materialwissenschaftler und Elektrochemiker forscht zur Entwicklung nachhaltiger Batterien, die eine Schlüsselrolle für das Gelingen der Energiewende spielen. International zählt er zu den führenden Expert*innen auf dem Gebiet der Natrium-Ionen-Batterien.