HZB receives financial support for improving the manufacturing process for CIGS solar cells

Sebastian Schmidt demonstrating one of the CIGS-Modules.

Sebastian Schmidt demonstrating one of the CIGS-Modules. © HZB

The Helmholtz-Zentrum Berlin (HZB) has pulled in a large project for further improving the manufacturing process for CIGS thin-film solar cells together with partners in Germany and from the Netherlands. The atmospheric pressure process operates without involving toxic gases and will be more economical. It will run under the acronym ACCESS-CIGS, which stands for “Atmospheric European Cooperation in Science and Technology (COST) Competitive Elemental Sulpho-Selenisation for CIGS”.

Experts at the Competence Centre Thin-Film- and Nanotechnology for Photovoltaics Berlin (PVcomB) in Adlershof are developing an innovative process to fabricate CIGS layers for application in thin-film solar cells. CIGS stands for the compound Cu(In,Ga)(Se,S)2, consisting of copper, indium, gallium, selenium and sulphur. Polycrystalline CIGS solar cell technology is noted for its high efficiencies at the solar-cell level and high energy yields for solar modules.

The process pursued at PVcomB does not require a vacuum and utilises elementary selenium and sulphur to convert the metallic precursor layer of copper-indium-gallium to a polycrystalline CIGS semiconductor layer. This has the advantage that the process can be carried out without the use of toxic gases such as hydrogen selenide (H2Se), saving on production costs. This might permit the manufacture of CIGS solar modules to be considerably more economical and thus support the currently difficult market situation.

PVcomB has been successful in attracting funding of 800 000 EUR under the SOLAR-ERA.NET Initiative. Staff will be working on the technology as part of a bi-national European consortium over the next two years to optimise the addition of selenium and improve its influence on the crystallisation process.

The project will be carried out in cooperation with the companies TNO/Solliance and Smit Thermal Solutions, both located in Eindhoven, Netherlands, and with the firm Dr. Eberl MBE Komponenten in Weil der Stadt on the German side.

red.

  • Copy link

You might also be interested in

  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.

  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.
  • Joint Kyiv Energy and Climate Lab goes live
    News
    28.11.2025
    Joint Kyiv Energy and Climate Lab goes live
    Helmholtz-Zentrum Berlin and the National University of Kyiv-Mohyla Academy established on 27 November a Joint Energy and Climate Lab.