Sound artist Gerriet K. Sharma designs sound sculptures of BESSY VSR

 Gerriet K. Sharma is setting up the icosahedral loudspeaker, photo: Kristijan Smok (izlog)

 Gerriet K. Sharma is setting up the icosahedral loudspeaker, photo: Kristijan Smok (izlog)

From 13 to 19 July 2016, the artist will be recording sounds on location

The electron storage ring BESSY II is the backdrop for an extraordinary art project. Sound artist Gerriet K. Sharma of the University of Music and Performing Arts Graz will translate the principles of accelerator physics into three-dimensional acoustic compositions. From 13 to 19 July 2016, the artist will be on location to record sounds directly in the electron storage ring. 

The electron storage ring BESSY II is the backdrop for an extraordinary art project. Sound artist Gerriet K. Sharma of the University of Music and Performing Arts Graz will translate the principles of accelerator physics into three-dimensional acoustic compositions. From 13 to 19 July 2016, the artist will be on location to record sounds directly in the electron storage ring. 

Gerriet K. Sharma found inspiration for this work in the expansion project BESSY VSR. Accelerator experts at HZB want to expand the synchrotron radiation source BESSY II into a variable-pulse-length storage ring – as the first team to do so worldwide. Each measuring station will then offer a choice between long and short light pulses. The artist has been working on this extraordinary project together with HZB researchers since the spring of 2016, to transform accelerator physics into an extraordinary 3D sound experience.

To generate the unique soundscapes of BESSY VSR, Gerriet K. Sharma is using an icosahedral loudspeaker. The acoustic figures it produces move almost physically through the room. “The combination of art and science is very prominent in this project. Both work with frequencies, amplitudes and overlays – just in different media,” says Kerstin Berthold, who is supervising the art project at HZB together with researchers from the Institute for Accelerator Physics.

After many months of intensive compositional work, the artist plans to present his work in the summer of 2017.

Notice for employees:
While he is working at BESSY II, the artist will be sampling tone and sound sequences in the ring, foyer and auditorium. Please understand that it may briefly get a little louder than usual, at times.

Project partners:

Gerriet K. Sharma (artist)
studied media art at the Academy of Media Arts Cologne, and composition and computer music at the University of Music and Performing Arts Graz. He is currently writing his doctoral thesis at the renowned art university in Graz on “Composing Sculptural Sound Phenomena in Computer Music”.  Among other distinctions, he received the 2008 German Soundart Award.

Helmholtz Zentrum Berlin

Institute for Accelerator Physics

Paul Goslawski, Godehard Wüstefeld and Martin Ruprecht

Communication Departement

Kerstin Berthold

(kb/sz)

  • Copy link

You might also be interested in

  • Sasol and HZB deepen collaboration with strategic focus on digitalisation
    News
    08.10.2025
    Sasol and HZB deepen collaboration with strategic focus on digitalisation
    Sasol Research & Technology and Helmholtz Zentrum Berlin (HZB) are expanding their partnership into the realm of digitalisation, building on their joint efforts in the CARE-O-SENE project and an Industrial Fellowship launched earlier this year. This new initiative marks a significant step forward in leveraging digital technologies to accelerate catalyst innovation and deepen scientific collaboration.
  • Technology Transfer Prize Ceremony 2025
    News
    07.10.2025
    Technology Transfer Prize Ceremony 2025
    This year’s Technology Transfer Prize Ceremony will take place on October 13 at 2 pm in the Lecture Hall, BESSY II Building, Adlershof.
  • Novel technique shines light on next-gen nanomaterials: how MXenes truly work
    Science Highlight
    01.10.2025
    Novel technique shines light on next-gen nanomaterials: how MXenes truly work
    Researchers have for the first time measured the true properties of individual MXene flakes — an exciting new nanomaterial with potential for better batteries, flexible electronics, and clean energy devices. By using a novel light-based technique called spectroscopic micro-ellipsometry, they discovered how MXenes behave at the single-flake level, revealing changes in conductivity and optical response that were previously hidden when studying only stacked layers. This breakthrough provides the fundamental knowledge and tools needed to design smarter, more efficient technologies powered by MXenes.