NEAT starts user operation

Gerrit Günther und Veronka Grzymek help Zhilun Lu with the experiment.

Gerrit Günther und Veronka Grzymek help Zhilun Lu with the experiment. © HZB

The newly built time of flight spectrometre NEAT has welcomed its first users: Jie Ma from Shanghai Jiao Tong University and his colleague Zhilun Lu examined magnetic excitations in crystalline samples and enjoyed fast data rate and high flexibility of instrumental configurations. NEAT team is now looking forward to further new studies and user experiments!     

The scientists from Shanghai did find what they were looking for, after only 60 minutes of data collection: “Our experiment was very successful and we hope to publish the results soon”, Zhilun Lu said.

Neutron time-of-flight spectrometer NEAT has a long history of successful application to study dynamics and function on very broad time and space domains ranging from 10-14 – 10-10 seconds and from 0.05 to up to about 5 nanometers respectively. Started originally in 1995 as NEAT I, NEAT II has been fully rebuild in order to address the needs of the user community for more powerful instruments. The upgrade started in 2010 after a rigorous internal and external selection process and resulted in 70 fold higher flux and a number of new instrumental capabilities including an improved angular resolution, larger accessible wavelength range and a design suited for high magnetic field experiments up to 15 Tesla.

 

red.

  • Copy link

You might also be interested in

  • Iridium-free catalysts for acid water electrolysis investigated
    Science Highlight
    13.08.2025
    Iridium-free catalysts for acid water electrolysis investigated
    Hydrogen will play an important role, both as a fuel and as a raw material for industry. However, in order to produce relevant quantities of hydrogen, water electrolysis must become feasible on a multi-gigawatt scale. One bottleneck is the catalysts required, with iridium in particular being an extremely rare element. An international collaboration has therefore investigated iridium-free catalysts for acidic water electrolysis based on the element cobalt. Through investigations with various methods, among them experiments at the LiXEdrom at the BESSY II X-ray source in Berlin, they were able to elucidate processes that take place during water electrolysis in a cobalt-iron-lead oxide material as the anode. The study is published in Nature Energy.
  • BESSY II: Insight into ultrafast spin processes with femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Insight into ultrafast spin processes with femtoslicing
    An international team has succeeded at BESSY II for the first time to elucidate how ultrafast spin-polarised current pulses can be characterised by measuring the ultrafast demagnetisation in a magnetic layer system within the first hundreds of femtoseconds. The findings are useful for the development of spintronic devices that enable faster and more energy-efficient information processing and storage. The collaboration involved teams from the University of Strasbourg, HZB, Uppsala University and several other universities.
  • Catalysis research with the X-ray microscope at BESSY II
    Science Highlight
    27.03.2025
    Catalysis research with the X-ray microscope at BESSY II
    Contrary to what we learned at school, some catalysts do change during the reaction: for example, certain electrocatalysts can change their structure and composition during the reaction when an electric field is applied. The X-ray microscope TXM at BESSY II in Berlin is a unique tool for studying such changes in detail. The results help to develop innovative catalysts for a wide range of applications. One example was recently published in Nature Materials. It involved the synthesis of ammonia from waste nitrates.