Highly sensitive method for detecting ion pairs in aqueous solution developed

Robert Seidel leads the Young Investigator Group Operando Interfacial Photochemistry.

Robert Seidel leads the Young Investigator Group Operando Interfacial Photochemistry. © HZB/Setzpfandt

The lithium chloride solution to be investigated was injected as an extremely fine stream of liquid into a vacuum chamber and analysed with soft X-ray emissions.

The lithium chloride solution to be investigated was injected as an extremely fine stream of liquid into a vacuum chamber and analysed with soft X-ray emissions. © HZB/Setzpfandt

Scientists of the Helmholtz-Zentrum Berlin, Freie Universität Berlin, Universität Heidelberg, and the University of Chemistry and Technology Prague have empirically detected a very specialised type of electron transfer in an aqueous salt solution, one which had only been predicted theoretically up to now. Based on these results, they now expect to have an extremely sensitive method for detecting ion pairs in solutions.

The scientists were successful in acquiring empirical evidence for what is referred to as electron-transfer-mediated decay (ETMD). “ETMD is a decay channel that becomes operative when a hole in the backbone of a molecule is filled by an electron from a neighbouring molecule. The energy released by this process is then utilized for ionisation of this or an additional neighbouring molecule”, explains Prof. Emad Flear Aziz.

“The decay is non-local and therefore is in competition with the much more frequently occurring processes of Auger emission and intermolecular Coulomb decay (ICD)”, explains co-author Dr. Robert Seidel. An electron hole in both these processes is filled by an electron from within their own respective molecules. The ETMD process was predicted earlier in 2001 and first detected in clusters of gas in 2011, according to the physicist.

The group utilised lithium chloride salt in an aqueous solution to detect the ETMD process, since neither Auger emission nor ICD decay are believed to occur with lithium ions in water. In this way, they increased the probability of the ETMD process and its detection.

The measurements took place at the Helmholtz-Zentrum BESSY II synchrotron in Berlin using the LiquidJet PES facility there. The lithium chloride solution to be investigated was injected as an extremely fine stream of liquid into a vacuum chamber and analysed with soft X-ray emissions.

“Since the strength of the ETMD process is strongly influenced by the separation between the host and neighbouring molecules, statements about the ion pairing can be made from the distribution and intensity of the ETMD spectrum”, explains Prof. Aziz. This means that ETMD puts a spectroscopic tool in the hands of scientists with which they can ascertain the thickness of a solvent envelope immediately surrounding an ion in an aqueous solution. The results of the study have been published in the renowned peer-reviewed journal Nature Chemistry.

The publication: Observation of electron-transfer-mediated decay in aqueous solution

Isaak Unger, Robert Seidel, Stephan Thürmer, Marvin N. Pohl, Emad F. Aziz, Lorenz S. Cederbaum, Eva Muchová, Petr Slavíček, Bernd Winter, and Nikolai V. Kryzhevoin.

Nature Chemistry (2017). DOI: 10.1038/nchem.2727

Freie Universität Berlin/red

  • Copy link

You might also be interested in

  • Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    News
    05.12.2025
    Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    At the 27th BESSY@HZB User Meeting, the Friends of HZB honoured the dissertation of Dr Enggar Pramanto Wibowo (Friedrich-Alexander University Erlangen-Nuremberg). The Innovation Award on Synchrotron Radiation 2025 went to Prof. Tim Salditt (Georg-August-University Göttingen) and Professors Danny D. Jonigk and Maximilian Ackermann (both, University Hospital of RWTH Aachen University). 
  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.
  • Peat as a sustainable precursor for fuel cell catalyst materials
    Science Highlight
    25.11.2025
    Peat as a sustainable precursor for fuel cell catalyst materials
    Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.