Dr. Antonio Abate will mit neuer Helmholtz-Nachwuchsgruppe die Langzeitstabilität von Perowskit-Solarzellen verbessern

Dr. Antonio Abate

Dr. Antonio Abate

Dr. Antonio Abate baut seit Februar 2017 eine Helmholtz-Nachwuchsgruppe am HZB auf. Mit seinem Team will er Perowskit-Solarzellen weiterentwickeln, damit sie eine interessante Alternative zu den weitverbreiteten Silizium-Solarzellen werden. Dafür ist es nötig, ein besseres Verständnis der Grenzflächen von Perowskit-Solarzellen zu erhalten. Sein Ziel ist es, diese Zellen so zu optimieren, dass sie eine Lebensdauer von 25 Jahren haben.

Für seine Helmholtz-Nachwuchsgruppe „Aktive Materialien und Grenzflächen für stabile Perowskit-Solarzellen" erhält Antonio Abate 300.000 Euro pro Jahr über einen Zeitraum von fünf Jahren. Er forschte unter anderem an den Universitäten Oxford und Cambridge in Großbritannien. Anschließend ging er mit einem Marie-Skłodowska-Curie-Stipendium an die École Polytechnique Fédérale de Lausanne (EPFL), Schweiz. Vor seinem Wechsel an das HZB leitet er die Photovoltaik-Aktivitäten am Adolphe Merkle Institut der Universität Fribourg, Schweiz.

Solarzellen aus Perowskiten sind besonders vielversprechend: Das Material ist kostengünstig und Forschende konnten den Wirkungsgrad dieser Solarzellen in kurzer Zeit deutlich erhöhen. Damit die Zellen auch wirtschaftlich interessant sind, muss die Langzeitstabilität jedoch verbessert werden. „Mit meiner Gruppe möchte ich stabile Perowskit-Solarzellen mit einer Lebensdauer von mehr als 25 Jahren entwickeln. Dazu müssen wir die optoelektronischen Mechanismen, die für den Materialabbau in den Perowskit-Solarzellen verantwortlich sind, noch besser verstehen“, sagt der Nachwuchsforscher.

Antonio Abate will sowohl die grundlegenden Prinzipien als auch die Prozessierung dieser Solarzellen erforschen, um die Grenzflächen an den verschiedenen Schichten aktiv kontrollieren zu können. Dazu wird er mit international führenden Forschungsgruppen und Industriepartnern aus der Elektronik zusammenarbeiten, um die Technologieentwicklung – vom Material zum Bauteil bis hin zur gesamten PV-Anlage – tatsächlich vorantreiben zu können.

Über das Programm "Helmholtz-Nachwuchsgruppen"

Das Förderprogramm richtet sich an hoch qualifizierte Nachwuchskräfte, deren Promotion zwei bis sechs Jahre zurückliegt. Die Nachwuchsgruppenleiterinnen und -leiter werden durch ein maßgeschneidertes Fortbildungs- und Mentoring-Programm bei ihrer akademischen Laufbahn unterstützt. Das Programm stärkt zudem die Vernetzung von Helmholtz-Zentren und Universitäten. Mehr

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Nachricht
    12.11.2025
    Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Dr. Susanne Nies leitet am HZB das Projekt Green Deal Ukraina, das den Aufbau eines nachhaltigen Energiesystems in der Ukraine unterstützt. Die Energieexpertin wurde nun auch in die wissenschaftliche Beratergruppe der Europäischen Kommission berufen, um im Zusammenhang mit der Netto-Null-Zielsetzung (DG GROW) regulatorische Belastungen aufzuzeigen und dazu zu beraten.
  • HZB gewinnt für Recruiting-Kampagne den HR Energy Award 2025
    Nachricht
    11.11.2025
    HZB gewinnt für Recruiting-Kampagne den HR Energy Award 2025
    Das Helmholtz-Zentrum Berlin (HZB) geht neue Wege, um talentierte junge Menschen für eine IT-Ausbildung zu gewinnen. Für die Kampagne „Go for IT! Mit Recruitainment zur IT-Ausbildung“ wurde das HZB mit dem diesjährigen HR Energy Award ausgezeichnet. Mit Gamification-Elementen lässt sich der Bewerbungsprozess für junge Menschen attraktiver und fairer gestalten.
  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.