Christiane Becker erhält Professur an der Hochschule für Technik und Wirtschaft Berlin

Prof. Dr. Christiane Becker lehrt an der Hochschule für Technik und Wirtschaft Berlin und forscht am HZB.

Prof. Dr. Christiane Becker lehrt an der Hochschule für Technik und Wirtschaft Berlin und forscht am HZB.

Prof. Dr. Christiane Becker hat einen Ruf auf eine W2-Professur für das Fachgebiet „Experimentalphysik mit den Schwerpunkten Materialwissenschaften und Photonik“ an der Hochschule für Technik und Wirtschaft (HTW) erhalten. Sie leitet seit Oktober 2012 eine vom Bundesforschungsministerium geförderte Nachwuchsgruppe am HZB.

Gemeinsam mit ihrem Team entwickelt Christiane Becker nano- und mikrostrukturierte Silizium-Bauelemente für Anwendungen in der Photovoltaik und der Photonik. Sie setzt dabei auf besonders einfache und kostengünstige Herstellungsprozesse, die für eine spätere industrielle Produktion geeignet sind. „Unser Fokus liegt auf hochskalierbaren Fabrikationsmethoden, unter anderem auf der Entwicklung der Nanoimprint-Lithographie und der Silizium-Verdampfung“, sagt die Leiterin der Nachwuchsgruppe Nano-Sippe. Der Name ihrer Gruppe leitet sich aus der englischen Bezeichnung für „Nanostructured SIlicon for Photonic and Photovoltaic ImplEmentations ab. Christiane Beckers Team arbeitet dabei eng mit Industrieunternehmen zusammen und hält mehrere Patente.

„Ich freue mich über die Berufung, weil sie eine langfristige Perspektive für meine Forschung bietet, und danke dem HZB für die Unterstützung. Die HTW bietet mir ein anregendes Umfeld und ich freue mich, dass ich mich weiterhin in der Lehre und Ausbildung von Studierenden engagieren kann“, sagt die Physikerin. Durch die gemeinsame Berufung von HTW und HZB wird Christiane Becker auch weiter am HZB mit ihrer Nachwuchsgruppe forschen.

Christiane Becker promovierte 2006 am Karlsruhe Institut für Technologie (KIT) mit einer Arbeit zur nichtlinearen Optik photonischer Kristalle. Im Anschluss wechselte sie an das Institut für Silizium-Photovoltaik des HZB und warb 2012 erfolgreich die Förderung für ihre BMBF-Nachwuchsgruppe ein. Im Jahr 2014 wurde Christiane Becker auf eine befristete W2-Professur an die HTW berufen, die im März 2017 in eine Dauerprofessur umgewandelt wurde.

Weitere Informationen zur Nachwuchsgruppe Nano-Sippe

Informationen zur Lehrtätigkeit von Christiane Becker an der Hochschule für Technik und Wirtschaft

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Verdrehte Nanoröhren, die eine Geschichte erzählen
    Nachricht
    09.12.2025
    Verdrehte Nanoröhren, die eine Geschichte erzählen
    In Zusammenarbeit mit deutschen Wissenschaftlern haben EPFL-Forscher gezeigt, dass die spiralförmige Geometrie winziger, verdrillter Magnetröhren genutzt werden kann, um Daten zu übertragen, die nicht auf Elektronen, sondern auf Quasiteilchen, den Magnonen, basieren.
  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.