Nanodiamonds as energy materials: tuning the functionalities

Nanodiamonds have been modified by attaching different molecules.

Nanodiamonds have been modified by attaching different molecules. © HZB

An international team has shed light onto interactions between nanodiamonds and water molecules. Experiments at synchrotron sources showed how hydrogenated groups on nanodiamond surfaces change the network of hydrogen bonds in the aqueous environment and may potentially influence the catalytic properties of nanodiamonds, for instance for the production of solar fuels from CO2 and light.

You think, diamonds are shiny, transparent and will sink in water? Well, it depends. Diamonds change a lot when they become really tiny: nanodiamonds with diameters of some 10-9 m tend to form a black and oily shimmering dispersion in water, a colloid. Such nanodiamonds in water have a wide variety of applicationsin medicine, chemistry and as metal-free catalysts for solar fuel production from CO2.

The nanoparticle−water interface plays a central role in many applications: it affects the colloidal stability, the optical properties and the chemical and catalytic reactivity of the nanoparticles. What happens exactly at the interface between nanodiamonds and water molecules was up to now largely unknown.

Now, an international cooperation of Russian, Japanese, American, French and German science institutes has shed light onto the interactions of nanodiamonds and water molecules. With a combination of spectroscopic methods at synchrotron lightsources BESSY II in Berlin and, UVSOR III in Japan, they analysed the interactions between water molecules and nanodiamonds. To this goal they modified the nanodiamond’s surface with different molecular groups, attaching hydrogen (-H), carboxyl groups (-COOH), hydroxyl groups (–OH), and other polyfunctional surface terminations.

Hydrogenated Nanodiamonds most promising for CO2 reduction

Surface terminations had a strong influence on the hydrogen bond networks, they observed. Whereas only slight modifications were observed for oxidized surfaces, hydrogenated nanodiamonds dramatically modified the water hydrogen bond network. “Hydrogenated groups induce a long-range disordering of water molecules around nanodiamonds and hydrogen-bonds between these water molecules are weaker than those found in bulk water”, HZB-scientist Dr. Tristan Petit explains.  The scientists propose that the water rearrangement is due to the accumulation of electrons at the diamond-water interface, which could be of particular interest for (photo)catalytic applications, i.e. for the production of solar fuels, from carbon dioxide and light.  

 “Hydrogenated diamond surfaces have the ability to efficiently generate solvated electrons in water for CO2 reduction under UV light exposure. The unique water structure associated with hydrogenated surface groups would certainly play an underestimated role in this exciting process””, Petit expects.

The Journal of Physical Chemistry, Part C (2017): "Unusual Water Hydrogen Bond Network around Hydrogenated Nanodiamonds"; Petit, Tristan; Puskar, Ljiljana; Dolenko, Tatiana; Choudhury, Sneha; Ritter, Eglof; Burikov, Sergey; Laptinskiy, Kirill; Brzustowski, Quentin; Schade, Ulrich; Yuzawa, Hayato; Nagasaka, Masanari; Kosugi, Nobuhiro; Kurzyp, Magdalena; Venerosy, Amélie; Girard, Hugues; Arnault, Jean-Charles; Osawa, Eiji; Nunn, Nicholas; Shenderova, Olga; Aziz, Emad.

DOI: 10.1021/acs.jpcc.7b00721

arö

You might also be interested in

  • Green hydrogen: How photoelectrochemical water splitting may become competitive
    Science Highlight
    20.03.2023
    Green hydrogen: How photoelectrochemical water splitting may become competitive
    Sunlight can be used to produce green hydrogen directly from water in photoelectrochemical (PEC) cells. So far, systems based on this "direct approach" have not been energetically competitive. However, the balance changes as soon as some of the hydrogen in such PEC cells is used in-situ for a catalytic hydrogenation reaction, resulting in the co-production of chemicals used in the chemical and pharmaceutical industries. The energy payback time of photoelectrochemical "green" hydrogen production can be reduced dramatically, the study shows.
  • Perovskite solar cells from the slot die coater - a step towards industrial production
    Science Highlight
    16.03.2023
    Perovskite solar cells from the slot die coater - a step towards industrial production
    Solar cells made from metal halide perovskites achieve high efficiencies and their production from liquid inks requires only a small amount of energy. A team led by Prof. Dr. Eva Unger at Helmholtz-Zentrum Berlin is investigating the production process. At the X-ray source BESSY II, the group has analyzed the optimal composition of precursor inks for the production of high-quality FAPbI3 perovskite thin films by slot-die coating. The solar cells produced with these inks were tested under real life conditions in the field for a year and scaled up to mini-module size.
  • Superstore MXene: New proton hydration structure determined
    Science Highlight
    13.03.2023
    Superstore MXene: New proton hydration structure determined
    MXenes are able to store large amounts of electrical energy like batteries and to charge and discharge rather quickly like a supercapacitor. They combine both talents and thus are a very interesting class of materials for energy storage. The material is structured like a kind of puff pastry, with the MXene layers separated by thin water films. A team at HZB has now investigated how protons migrate in the water films confined between the layers of the material and enable charge transport. Their results have been published in the renowned journal Nature Communications and may accelerate the optimisation of these kinds of energy storage materials.