Neu am Campus Wannsee: CoreLab Quantenmaterialien

In diesem optischen Zonenschmelzofen enstehen große Einkristalle.

In diesem optischen Zonenschmelzofen enstehen große Einkristalle. © M. Setzpfandt/HZB

Eine Laue-Apparatur ermöglicht es, die Kristalle präzise auszurichten.

Eine Laue-Apparatur ermöglicht es, die Kristalle präzise auszurichten. © M. Setzpfandt/HZB

Die Messung von spezifischer Wärme und anderen Eigenschaften gibt Hinweise auf Phasenübergänge in der Probe.

Die Messung von spezifischer Wärme und anderen Eigenschaften gibt Hinweise auf Phasenübergänge in der Probe. © M. Setzpfandt/HZB

Das Helmholtz-Zentrum Berlin erweitert sein Angebot an CoreLabs für die Forschung an Energiematerialien. Zusätzlich zu den fünf bereits etablierten CoreLabs wurde nun ein CoreLab für Quantenmaterialien eingerichtet. Ein Forscherteam vom HZB-Institut für Quantenphänomene in neuen Materialien betreut das CoreLab mit dem modernen Gerätepark. Das CoreLab steht auch Messgästen aus anderen Forschungseinrichtungen offen.  

Quantenphänomene treten in der Regel am deutlichsten in perfekten Einkristallen und bei tiefen Temperaturen auf. Um solche Einkristalle herzustellen, mit Laborexperimenten zu vermessen oder für Messungen an der Neutronenquelle BER II oder bei BESSY II vorzubereiten, hat ein Team um Prof. Dr. Bella Lake und Dr. Konrad Siemensmeyer ein eigenes CoreLab für Quantenmaterialien aufgebaut. Auch externe Forscherinnen und Forscher können dieses CoreLab nutzen und dabei von der Expertise des HZB-Teams profitieren.

Zucht und Vorbereitung von Einkristallen

Denn häufig liegen die Materialien nicht als große Einkristalle vor, sondern müssen erst als Pulver in winzigen Mikrokristallen hergestellt werden. Schon diese Synthese ist oft schwierig und ist deshalb ein zentrales Thema in diesem HZB-CoreLab. Aus diesen Pulverproben lassen sich dann mit einem leistungsstarken optischen Zonenschmelzofen größere Einkristalle ziehen, die deutlich aussagekräftigere Messungen erlauben. Die Zucht von Einkristallen aus Pulverproben erfordert viel Erfahrung, die am HZB vorhanden ist. Eine Laue-Apparatur ermöglicht es, diese Kristalle präzise auszurichten. Im Anschluss lassen sich die Kristalle dann für weitere Experimente mit einer Fadensäge orientiert schneiden oder ihre Flächen polieren. Die Methoden sind sehr flexibel und für alle möglichen Messungen einsetzbar. Proben für Neutronenexperimente, Experimente an BESSY II oder Laborexperimente sind hier leicht herzustellen. Weniger erfahrene Nutzer werden eng betreut, damit auch dort der Erfolg sichergestellt werden kann.

Transporteigenschaften und Phasenübergänge

In einem weiteren Raum stehen hohe magnetische Felder, tiefe Temperaturen mit zwei „Physical Property Measurement Systems“ sowie ein empfindliches SQUID-Magnetometer bereit. Damit lassen sich Transporteigenschaften wie die Wärmeleitfähigkeit, aber auch die Magnetisierung und spezifische Wärme von Materialien messen. Die Messung dieser Eigenschaften macht so genannte Phasenübergänge sichtbar. Diese Phasenübergänge hängen mit quantenphysikalischen Gesetzmäßigkeiten zusammen und zeigen an, dass sich im Innern der Materialien neue Ordnungen etablieren.

CoreLabs für Nutzer aus Forschung und Industrie

Als Betreiber von Großgeräten hat das HZB große Erfahrung mit der Organisation eines externen Nutzerbetriebs. Diese Erfahrung bringt das HZB nun auch in den Betrieb der CoreLabs ein, die mit modernsten, teilweise einzigartigen Instrumenten und Geräten für die Analyse und Synthese von Energiematerialien ausgestattet sind. Auch internationale Messgäste und Partner aus der Industrie sind hier willkommen.

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Was die Zinkkonzentration in Zähnen verrät
    Science Highlight
    19.02.2026
    Was die Zinkkonzentration in Zähnen verrät
    Zähne sind Verbundstrukturen aus Mineralien und Proteinen, dabei besteht der Großteil des Zahns aus Dentin, einem knochenartigen, hochporösen Material. Diese Struktur macht Zähne sowohl stark als auch empfindlich. Neben Kalzium und Phosphat enthalten Zähne auch Spurenelemente wie Zink. Mit komplementären mikroskopischen Verfahren hat ein Team der Charité Berlin, der TU Berlin und des HZB die Verteilung von natürlichem Zink im Zahn ermittelt. Das Ergebnis: mit zunehmender Porosität des Dentins in Richtung Pulpa steigt die Zinkkonzentration um das 5- bis 10-fache. Diese Erkenntnis hilft, den Einfluss von zinkhaltigen Füllungen auf die Zahngesundheit besser zu verstehen und könnte Verbesserungen in der Zahnmedizin anstoßen.
  • Faszinierendes Fundstück wird zu wertvoller Wissensquelle
    Nachricht
    12.02.2026
    Faszinierendes Fundstück wird zu wertvoller Wissensquelle
    Das Bayerische Landesamt für Denkmalpflege (BLfD) hat ein besonderes Fundstück aus der mittleren Bronzezeit nach Berlin geschickt, um es mit modernsten Methoden zerstörungsfrei zu untersuchen: Es handelt sich um ein mehr als 3400 Jahre altes Bronzeschwert, das 2023 im schwäbischen Nördlingen bei archäologischen Grabungen zutage trat. Die Expertinnen und Experten konnten herausfinden, wie Griff und Klinge miteinander verbunden sind und wie die seltenen und gut erhaltenen Verzierungen am Knauf angefertigt wurden – und sich so den Handwerkstechniken im Süddeutschland der Bronzezeit annähern. Zum Einsatz kamen eine 3D-Computertomographie und Röntgendiffraktion zur Eigenspannungsanalyse am Helmholtz-Zentrum Berlin (HZB) sowie die Röntgenfluoreszenz-Spektroskopie bei einem von der Bundesanstalt für Materialforschung und -prüfung (BAM) betreuten Strahlrohr an BESSY II.
  • Topologische Überraschungen beim Element Kobalt
    Science Highlight
    11.02.2026
    Topologische Überraschungen beim Element Kobalt
    Das Element Kobalt gilt als typischer Ferromagnet ohne weitere Geheimnisse. Ein internationales Team unter der Leitung von Dr. Jaime Sánchez-Barriga (HZB) hat nun jedoch komplexe topologische Merkmale in der elektronischen Struktur von Kobalt entdeckt. Spin-aufgelöste Messungen der Bandstruktur (Spin-ARPES) an BESSY II zeigten verschränkte Energiebänder, die sich selbst bei Raumtemperatur entlang ausgedehnter Pfade in bestimmten kristallographischen Richtungen kreuzen. Dadurch kann Kobalt als hochgradig abstimmbare und unerwartet reichhaltige topologische Plattform verstanden werden. Dies eröffnet Perspektiven, um magnetische topologische Zustände in Kobalt für künftige Informationstechnologien zu nutzen.