Neu am Campus Wannsee: CoreLab Quantenmaterialien

In diesem optischen Zonenschmelzofen enstehen große Einkristalle.

In diesem optischen Zonenschmelzofen enstehen große Einkristalle. © M. Setzpfandt/HZB

Eine Laue-Apparatur ermöglicht es, die Kristalle präzise auszurichten.

Eine Laue-Apparatur ermöglicht es, die Kristalle präzise auszurichten. © M. Setzpfandt/HZB

Die Messung von spezifischer Wärme und anderen Eigenschaften gibt Hinweise auf Phasenübergänge in der Probe.

Die Messung von spezifischer Wärme und anderen Eigenschaften gibt Hinweise auf Phasenübergänge in der Probe. © M. Setzpfandt/HZB

Das Helmholtz-Zentrum Berlin erweitert sein Angebot an CoreLabs für die Forschung an Energiematerialien. Zusätzlich zu den fünf bereits etablierten CoreLabs wurde nun ein CoreLab für Quantenmaterialien eingerichtet. Ein Forscherteam vom HZB-Institut für Quantenphänomene in neuen Materialien betreut das CoreLab mit dem modernen Gerätepark. Das CoreLab steht auch Messgästen aus anderen Forschungseinrichtungen offen.  

Quantenphänomene treten in der Regel am deutlichsten in perfekten Einkristallen und bei tiefen Temperaturen auf. Um solche Einkristalle herzustellen, mit Laborexperimenten zu vermessen oder für Messungen an der Neutronenquelle BER II oder bei BESSY II vorzubereiten, hat ein Team um Prof. Dr. Bella Lake und Dr. Konrad Siemensmeyer ein eigenes CoreLab für Quantenmaterialien aufgebaut. Auch externe Forscherinnen und Forscher können dieses CoreLab nutzen und dabei von der Expertise des HZB-Teams profitieren.

Zucht und Vorbereitung von Einkristallen

Denn häufig liegen die Materialien nicht als große Einkristalle vor, sondern müssen erst als Pulver in winzigen Mikrokristallen hergestellt werden. Schon diese Synthese ist oft schwierig und ist deshalb ein zentrales Thema in diesem HZB-CoreLab. Aus diesen Pulverproben lassen sich dann mit einem leistungsstarken optischen Zonenschmelzofen größere Einkristalle ziehen, die deutlich aussagekräftigere Messungen erlauben. Die Zucht von Einkristallen aus Pulverproben erfordert viel Erfahrung, die am HZB vorhanden ist. Eine Laue-Apparatur ermöglicht es, diese Kristalle präzise auszurichten. Im Anschluss lassen sich die Kristalle dann für weitere Experimente mit einer Fadensäge orientiert schneiden oder ihre Flächen polieren. Die Methoden sind sehr flexibel und für alle möglichen Messungen einsetzbar. Proben für Neutronenexperimente, Experimente an BESSY II oder Laborexperimente sind hier leicht herzustellen. Weniger erfahrene Nutzer werden eng betreut, damit auch dort der Erfolg sichergestellt werden kann.

Transporteigenschaften und Phasenübergänge

In einem weiteren Raum stehen hohe magnetische Felder, tiefe Temperaturen mit zwei „Physical Property Measurement Systems“ sowie ein empfindliches SQUID-Magnetometer bereit. Damit lassen sich Transporteigenschaften wie die Wärmeleitfähigkeit, aber auch die Magnetisierung und spezifische Wärme von Materialien messen. Die Messung dieser Eigenschaften macht so genannte Phasenübergänge sichtbar. Diese Phasenübergänge hängen mit quantenphysikalischen Gesetzmäßigkeiten zusammen und zeigen an, dass sich im Innern der Materialien neue Ordnungen etablieren.

CoreLabs für Nutzer aus Forschung und Industrie

Als Betreiber von Großgeräten hat das HZB große Erfahrung mit der Organisation eines externen Nutzerbetriebs. Diese Erfahrung bringt das HZB nun auch in den Betrieb der CoreLabs ein, die mit modernsten, teilweise einzigartigen Instrumenten und Geräten für die Analyse und Synthese von Energiematerialien ausgestattet sind. Auch internationale Messgäste und Partner aus der Industrie sind hier willkommen.

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Ein Rekordjahr für unser Reallabor für BIPV
    Nachricht
    22.01.2026
    Ein Rekordjahr für unser Reallabor für BIPV
    Unsere Solarfassade in Berlin-Adlershof hat im Jahr 2025 so viel Strom erzeugt wie in keinem der vergangenen vier Betriebsjahre.
  • Kompakter Elektronenbeschleuniger zur Aufbereitung von PFAS-belastetem Wasser
    Science Highlight
    19.01.2026
    Kompakter Elektronenbeschleuniger zur Aufbereitung von PFAS-belastetem Wasser
    So genannte Ewigkeitschemikalien oder PFAS-Verbindungen sind ein zunehmendes Umweltproblem. Ein innovativer Ansatz für die Aufbereitung von Wasser und Böden in PFAS-belasteten Gebieten kommt jetzt aus der Beschleunigerphysik: Hochenergetische Elektronen können PFAS-Moleküle durch Radiolyse in unschädliche Bestandteile zerlegen. Ein am HZB entwickelter Beschleuniger auf Basis eines SHF-Photoinjektors kann den dafür nötigen Elektronenstrahl liefern, zeigt nun eine Studie in PLOS One.
  • Verdrehte Nanoröhren, die eine Geschichte erzählen
    Nachricht
    09.12.2025
    Verdrehte Nanoröhren, die eine Geschichte erzählen
    In Zusammenarbeit mit deutschen Wissenschaftlern haben EPFL-Forscher gezeigt, dass die spiralförmige Geometrie winziger, verdrillter Magnetröhren genutzt werden kann, um Daten zu übertragen, die nicht auf Elektronen, sondern auf Quasiteilchen, den Magnonen, basieren.