Themen: Nutzerforschung (27) Spintronik (90) Quantenmaterialien (26)

Nachricht    09.02.2018

Nutzerforschung am BER II: Neue Erkenntnisse zur Hochtemperatur-Supraleitung

Schematische Darstellung der “Streifen-Ordnung”: Die blauen Streifen sind die geladenen, supraleitenden Bereiche. Abbildung mit Änderungen übernommen von Physical Review Letters.

 

Die farbigen 2D-Plots zeigen die gemessenen Daten der magnetische Ordnung (links) und der magnetischen Anregungen (rechts). Nur mithilfe hochaufgelöster Messungen lässt sich zeigen, dass beide Datensätze nicht genau zueinander passen, und die Signale daher nicht aus demselben Bereich der Probe stammen. Abbildung mit Änderungen übernommen von Physical Review Letters.

Auch nach 30 Jahren Forschung bleiben viele Eigenschaften von Hochtemperatur-Supraleitern rätselhaft. So bildet sich in einigen Kuprat-Supraleitern eine magnetische “Streifen-Ordnung” aus. Ein dänisches Forscherteam hat diese Streifen mit Hilfe von Neutronen an den hochauflösenden Spektrometern FLEXX (HZB) und ThALES (ILL, Grenoble) genauer untersucht. Ihre Ergebnisse, die jetzt in Physical Review Letters veröffentlicht wurden, stellen das gängige Verständnis dieser „Streifen-Ordnung“ in Frage. Sie tragen dazu bei, das Phänomen der  Hochtemperatur-Supraleitung weiter zu entschlüsseln.

Bereits seit 30 Jahren ist bekannt, dass Kuprat-Supraleiter bei ungewöhnlich hohen Temperaturen supraleitend werden – vielfach oberhalb des Siedepunkts von Flüssigstickstoff (-196° C). Das macht sie für Anwendungen besonders interessant. Die Forschung hat gezeigt, dass bei den Kupraten ein anderer Mechanismus zur Entstehung des supraleitenden Zustands führt, als dies in konventionellen Supraleitern der Fall ist. Allerdings ist dieser Mechanismus trotz intensiver Forschung immer noch nicht richtig verstanden. Forscher hoffen, dass ein tieferes Verständnis der Hochtemperatur-Supraleiter es ermöglichen könnte, Materialien zu entwickeln, die auch bei Raumtemperatur supraleitend sind.

In den Kupraten ist Supraleitung sehr eng mit den magnetischen Eigenschaften  verknüpft – ganz im Gegensatz zu konventionellen Supraleitern, bei denen die Supraleitung durch Magnetismus zerstört wird. Für einige Kupratverbindungen wird ein ungewöhnlicher Zustand beobachtet: Streifen mit magnetischer Ordnung wechseln sich ab mit elektrisch geladenen, supraleitenden Streifen (siehe Bild). Auch magnetische Anregungen wurden gefunden, die anscheinend zu den Streifen mit magnetischer Ordnung gehören.

Ein Team aus dem Niels Bohr Institut an der Universität Kopenhagen, Dänemark, hat sich diese magnetischen Streifen mittels Neutronenstreuung genauer angesehen. Die Spektrometer FLEXX (HZB) und ThALES (ILL, Grenoble) bieten dafür eine besonders hohe Auflösung. Aus ihren Daten konnten die Wissenschaftler folgern, dass die magnetisch geordneten Streifen und die magnetischen Anregungen nicht zueinander passen, obwohl die Anregungen auch streifenförmig sind. Beide Phänomene entstehen offenbar in unterschiedlichen Bereichen der Probe. Der Vergleich mit anderen Experimenten suggeriert, dass eine Phasenseparation in eine magnetische und eine supraleitende Phase erfolgt, und dass die magnetischen Anregungen zur supraleitenden Phase gehören.

Diese Annahme wirft ein ganz neues Licht auf viele bereits veröffentlichte Experimente zu Kuprat-Supraleitern, die von einem gemeinsamen Ursprung der magnetischen Ordnung und der magnetischen Anregungen ausgehen. Die Ergebnisse wurden jetzt in Physical Review Letters veröffentlicht.

 

Zur Publikation in Phys. Rev. Letters (2018): "Distinct Nature of Static and Dynamic Magnetic Stripes in Cuprate Superconductors", H. Jacobsen, S. L. Holm, M.-E. Lăcătuşu, A. T. Rømer, M. Bertelsen, M. Boehm, R. Toft-Petersen, J.-C. Grivel, S. B. Emery, L. Udby, B. O. Wells, and K. Lefmann.

DOI: 10.1103/PhysRevLett.120.037003

Zita Hüsges


           



Das könnte Sie auch interessieren
  • <p>Die Messungen zeigen beim doppellagigem Graphen, dass die Bandstruktur einen flachen Bereich etwas unterhalb der Fermi-Energie aufweist.</p>SCIENCE HIGHLIGHT      10.11.2018

    Graphen auf dem Weg zur Supraleitung

    Doppelschichten aus Graphen haben eine Eigenschaft, die ihnen erlauben könnte, Strom völlig widerstandslos zu leiten. Dies zeigt nun eine Arbeit an BESSY II. Ein Team hat dafür die Bandstruktur dieser Proben mit hoher Präzision ausgemessen und an einer überraschenden Stelle einen flachen Bereich entdeckt. Möglich wurde dies durch die extrem hohe Auflösung des ARPES-Instruments an BESSY II.   [...]


  • <p>Die Bilder zeigen den Verlauf der magnetischen Feldlinien im Inneren eines supraleitenden Blei-Quaders in zwei verschiedenen Schnittebenen (gestrichelter Umriss der Bleiprobe). Der Skalenstrich entspricht 5 mm. </p>SCIENCE HIGHLIGHT      02.10.2018

    Neutronen tasten Magnetfelder im Innern von Proben ab

    Mit Hilfe einer neu entwickelten Neutronen-Tomographie-Methode hat ein HZB-Team erstmals den Verlauf von magnetischen Feldlinien im Innern von Materialien abbilden können. Die „Tensorielle Neutronen-Tomographie“ verspricht neue Einblicke in Supraleiter, Batterie-Elektroden und andere Energiematerialien. [...]


  • <p>Der Laserpuls (rot) erzeugt W&auml;rme im D&uuml;nnschichtsystem. Mit zeitaufgel&ouml;sten R&ouml;ntgendiffraktionsexperimenten l&auml;sst sich analysieren, wie sich die W&auml;rme verteilt. </p>SCIENCE HIGHLIGHT      21.08.2018

    Zukünftige Informationstechnologien: Wärmetransport auf der Nanoskala unter die Lupe genommen

    Ein Forscherteam aus dem Helmholtz-Zentrum Berlin (HZB) und der Universität Potsdam hat den Wärmetransport in einem Modellsystem aus nanometerdünnen metallischen und magnetischen Schichten untersucht. Ähnliche Systeme sind Kandidaten für künftige hocheffiziente Datenspeicher, die durch Laserpulse lokal erhitzt und neu beschrieben werden können (Heat-Assisted Magnetic Recording). Experimente mit kurzen Röntgenpulsen zeigten nun, dass sich in dem Modellsystem die Wärme hundertmal langsamer als erwartet verteilt. Die Ergebnisse sind in Nature Communications publiziert. [...]




Newsletter