Zu Gast am HZB: Bessel-Preisträger Benjamin Rotenberg
Benjamin Rotenberg wird regelmäßig am HZB-Institut für Solare Brennstoffe zu Gast sein. © CNRS/Cyril Fresillon
Prof. Dr. Benjamin Rotenberg hat einen Friedrich Wilhelm Bessel-Forschungspreis der Alexander von Humboldt-Stiftung für 2018 erhalten und kommt damit regelmäßig zu Gast an das Helmholtz-Zentrum Berlin. Rotenberg forscht am Centre National de Recherche Scientifique (CNRS) und leitet eine Arbeitsgrupe an der Sorbonne Universität in Paris. Er arbeitet auf dem Grenzgebiet zwischen Physik und Chemie und modelliert Transportprozesse in Materialien, an Grenzflächen und in Elektrolyten.
Rotenberg leitet am Laboratoire PHENIX (CNRS) und an der Sorbonne eine Theoriegruppe. Zuvor hatte er an Forschungseinrichtungen in Amsterdam, Berkeley, Barcelona und Cambridge gearbeitet. Die von ihm entwickelten Modelle lassen sich auf vielfältige Fragen im Umweltbereich und in der Energieforschung anwenden.
Aktuell konzentriert sich Rotenberg auf Prozesse in komplexen Materialsystemen, die für die Speicherung oder Umwandlung von Energie interessant sind. Aus diesem Grund hatte ihn Prof. Dr. Joe Dzubiella, der am HZB eine Theoriegruppe leitet, für den Bessel-Forschungpreis vorgeschlagen. Während seiner Zeit am HZB-Institut für Solare Brennstoffe will Rotenberg eng mit Kolleginnen und Kollegen aus experimentellen Arbeitsgruppen zusammenarbeiten. Im Fokus der gemeinsamen Arbeit stehen komplexe Elektrolyte und Katalysatoren, welche die Produktion von Wasserstoff mit Sonnenlicht ermöglichen.
Über den Friedrich Wilhelm Bessel-Forschungspreis:
Für den Friedrich Wilhelm Bessel-Forschungspreis werden international anerkannte Wissenschaftlerinnen und Wissenschaftler aus dem Ausland nominiert, die ihre Promotion vor nicht mehr als 18 Jahren abgeschlossen haben. Mit der Förderung können sie selbst gewählte Forschungsvorhaben in Deutschland in Kooperation mit Fachkollegen für einen Zeitraum von bis zu einem Jahr durchführen. Der Preis ist mit 45.000 Euro dotiert.
Weitere Informationen: https://www.humboldt-foundation.de/web/bessel-preis.html
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=14786;sprache=de/
- Link kopieren
-
BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
-
Ein innerer Kompass für Meereslebewesen im Paläozän
Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
-
Was vibrierende Moleküle über die Zellbiologie verraten
Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.