HZB scientist got the dissertation prize at the spring conference of the Deutsche Physikalische Gesellschaft

Dr. Nele Thielemann-Kühn was awarded the Innomag Dissertation Award 2018.

Dr. Nele Thielemann-Kühn was awarded the Innomag Dissertation Award 2018. © Privat

Dr. Nele Thielemann-Kühn was awarded the dissertation prize of the magnetism research group at the spring conference of the Deutsche Physikalische Gesellschaft (German physical society/DPG) in Berlin. The prize is awarded for outstanding research in the field of magnetism. 

Dr. Nele Thielemann-Kühn studied ultrafast magnetic dynamics in ferro- and antiferromagnetic dysprosium during her PhD work at the HZB and the University of Potsdam. Her dissertation, mentored at HZB by Dr. Christian Schüßler-Langeheine, included experiments with ultrashort X-ray pulses at BESSY II. She had already received the 2017 Ernst Eckhard Koch Prize for her dissertation and is now continuing research at Freie Universität Berlin.

Results have been published for example in Physical Review Letters (06 November 2017): Ultrafast and energy-efficient quenching of spin order: Antiferromagnetism beats ferromagnetism; Nele Thielemann-Kühn, Daniel Schick, Niko Pontius, Christoph Trabant, Rolf Mitzner, Karsten Holldack, Hartmut Zabel, Alexander Föhlisch, Christian Schüßler-Langeheine

DOI: 10.1103/PhysRevLett.119.197202

Highlighted as Focus story in "Physics": Quick Changes in Magnetic Materials

Web news to this publication: Future IT: Antiferromagnetic dysprosium reveals magnetic switching with less energy

red.

  • Copy link

You might also be interested in

  • Battery research: visualisation of aging processes operando
    Science Highlight
    29.04.2025
    Battery research: visualisation of aging processes operando
    Lithium button cells with electrodes made of nickel-manganese-cobalt oxides (NMC) are very powerful. Unfortunately, their capacity decreases over time. Now, for the first time, a team has used a non-destructive method to observe how the elemental composition of the individual layers in a button cell changes during charging cycles. The study, now published in the journal Small, involved teams from the Physikalisch-Technische Bundesanstalt (PTB), the University of Münster, researchers from the SyncLab research group at HZB and the BLiX laboratory at the Technical University of Berlin. Measurements were carried out in the BLiX laboratory and at the BESSY II synchrotron radiation source.
  • New instrument at BESSY II: The OÆSE endstation in EMIL
    Science Highlight
    23.04.2025
    New instrument at BESSY II: The OÆSE endstation in EMIL
    A new instrument is now available at BESSY II for investigating catalyst materials, battery electrodes and other energy devices under operating conditions: the Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) endstation in the Energy Materials In-situ Laboratory Berlin (EMIL). A team led by Raul Garcia-Diez and Marcus Bär showcases the instrument’s capabilities via a proof-of-concept study on electrodeposited copper.
  • Green hydrogen: A cage structured material transforms into a performant catalyst
    Science Highlight
    17.04.2025
    Green hydrogen: A cage structured material transforms into a performant catalyst
    Clathrates are characterised by a complex cage structure that provides space for guest ions too. Now, for the first time, a team has investigated the suitability of clathrates as catalysts for electrolytic hydrogen production with impressive results: the clathrate sample was even more efficient and robust than currently used nickel-based catalysts. They also found a reason for this enhanced performance. Measurements at BESSY II showed that the clathrates undergo structural changes during the catalytic reaction: the three-dimensional cage structure decays into ultra-thin nanosheets that allow maximum contact with active catalytic centres. The study has been published in the journal ‘Angewandte Chemie’.