Allianz Bauwerkintegrierte Photovoltaik wählt Björn Rau in den Vorstand
Semitransparente PV-Elemente auf dem Dach des TGV-Bahnhofs in Perpignan, Frankreich. © CC 3.0/Issolsa
Die Mitgliederversammlung der Allianz Bauwerkintegrierte Photovoltaik (BIPV) hat den Physiker und Photovoltaik-Experten Dr. Björn Rau, Helmholtz-Zentrum Berlin, einstimmig in den Vorstand gewählt.
Dr. Björn Rau ist stellvertretender Direktor des PVcomB am HZB und engagiert sich seit Mitte 2016 in der Allianz Bauwerkintegrierte Photovoltaik. So leitet er bereits die Arbeitsgruppe "Forschung" der Allianz BIPV.
Auf der letzten Mitgliederversammlung hat er sich zur Wahl für den Vorstand aufstellen lassen. In seiner Bewerbungsrede hob er die unterschiedlichen Forschungskompetenzen innerhalb des Mitgliederkreises hervor: „Woran jeder einzelne von uns arbeitet, ist noch nicht allen bekannt. Hier können wir den Wissenstransfer noch weiter ausbauen.“
Durch intensiven Austausch möchte er vor allem die praktische Kooperation zwischen den Mitgliedern fördern und Brücken schlagen zwischen den verschiedensten Akteuren der BIPV Branche.
Die Mitgliederversammlung wählte Rau sowie sechs weitere Kandidaten zum neuen Vorstand.
Mehr Informationen zur Allianz BIPV:
Die Allianz BIPV e.V. wurde im April 2016 gegründet. Ziel des Vereins ist es, die Bauwerkintegrierte Photovoltaik aus der Nische in die breite Anwendung zu führen. Integrierte Solaranlagen sollen zu einem selbstverständlichen Bestandteil von Gebäuden werden. In der Allianz BIPV engagieren sich namhafte Hersteller, Forschungseinrichtungen, Architekten, Planer und Berater.
www.allianz-bipv.org
Presseinfo der Allianz Bauwerkintegrierte Photovoltaik zum neuen Vorstand
red.
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=14837;sprache=de/
- Link kopieren
-
BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
-
Ein innerer Kompass für Meereslebewesen im Paläozän
Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
-
Was vibrierende Moleküle über die Zellbiologie verraten
Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.