HZB experts present cooperation opportunities at Intersolar Europe in Munich

Tandem solar cells combining silicon and perovskite layers could convert up to 30 percent energy into electricity.

Tandem solar cells combining silicon and perovskite layers could convert up to 30 percent energy into electricity.

How do environmental influences influence the performance of solar modules? The Competence Center for Photovoltaics (PVcomB) is investigating this question at the outdoor test stand.

How do environmental influences influence the performance of solar modules? The Competence Center for Photovoltaics (PVcomB) is investigating this question at the outdoor test stand.

The international exhibition “Intersolar” brings photovoltaic research and the solar industry together. It is a perfect opportunity for researchers from Helmholtz-Zentrum Berlin to present thin-film photovoltaic technologies and projects, including for example perovskite solar cells and tandem solar cells.

Intersolar Europe(22 to 22 June) is one of the most important international events for the solar industry, where manufacturers, suppliers, distributors and service providers come to learn of new developments in the solar industry. A team from Helmholtz-Zentrum Berlin (HZB) will be there, in Hall A2, Booth 572, to show which topics HZB is researching in the field of renewable energies. Important points of contact for industry are the Helmholtz Innovation Lab HySPRINT and the Competence Centre Thin-Film and Nanotechnology for Photovoltaics Berlin (PVcomB). These two institutes promote technology transfer and will be there to answer questions at the exhibition.

In the Helmholtz Innovation Lab HySPRINT, silicon-based materials are being combined with organometallic perovskite crystals to develop so-called hybrid tandem cells. Such cells can be used for solar generation of electricity or hydrogen.

The Competence Centre Thin-Film- and Nanotechnology for Photovoltaics Berlin (PVcomB) has industrial reference lines for manufacturing CIGS and silicon photovoltaics. Teams of HZB experts are collaborating with industry to develop novel thin-film technologies and products. Joint research projects with industrial partners have already culminated in many successful innovations.

Research into new material systems for photovoltaics is an important focal topic at HZB. The Centre is specialised in so-called energy materials that convert or store energy. This includes solar cells, material systems for generating hydrogen from sunlight, and magnetic material systems for developing energy-efficient information technologies. For studying interfaces and surfaces of thin films, HZB operates the photon source BESSY II and a series of CoreLabs with latest generation equipment.

HZB’s info stand is in Hall A2, Booth 572 (A2.572). The exhibition will take place from 20 to 22 June 2018 in Munich

 

More information

- on HySPRINT

- on PVcomB

- on INTERSOLAR EUROPE

(sz)

  • Copy link

You might also be interested in

  • 5000th patient treated with protons for eye tumours
    News
    19.08.2025
    5000th patient treated with protons for eye tumours
    For more than 20 years, Charité – Universitätsmedizin Berlin and the Helmholtz-Zentrum Berlin (HZB) have been jointly offering proton radiation therapy for eye tumours. The HZB operates a proton accelerator in Berlin-Wannsee for this purpose, while Charité provides medical care for the patients. The 5000th patient was treated at the beginning of August.
  • Iridium-free catalysts for acid water electrolysis investigated
    Science Highlight
    13.08.2025
    Iridium-free catalysts for acid water electrolysis investigated
    Hydrogen will play an important role, both as a fuel and as a raw material for industry. However, in order to produce relevant quantities of hydrogen, water electrolysis must become feasible on a multi-gigawatt scale. One bottleneck is the catalysts required, with iridium in particular being an extremely rare element. An international collaboration has therefore investigated iridium-free catalysts for acidic water electrolysis based on the element cobalt. Through investigations with various methods, among them experiments at the LiXEdrom at the BESSY II X-ray source in Berlin, they were able to elucidate processes that take place during water electrolysis in a cobalt-iron-lead oxide material as the anode. The study is published in Nature Energy.
  • Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Science Highlight
    12.08.2025
    Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Using a non-destructive method, a team at HZB investigated practical lithium-sulphur pouch cells with lean electrolyte for the first time. With operando neutron tomography, they could visualise in real-time how the liquid electrolyte distributes and wets the electrodes across multilayers during charging and discharging. These findings offer valuable insights into the cell failure mechanisms and are helpful to design compact Li-S batteries with a high energy density in formats relevant to industrial applications.