Helmholtz-Gemeinschaft fördert ATHENA-Projekt mit 29,99 Mio. Euro

ATHENA („Accelerator Technology HElmholtz iNfrAstructure”) heißt eine neue Forschungs- und Entwicklungsplattform für Beschleunigertechnologien, in der sich alle sechs Helmholtz-Beschleunigerzentren (DESY, FZJ, HZB, HZDR, KIT und GSI) mit dem Helmholtzinstitut Jena zusammentun. Die Helmholtz-Gemeinschaft hat jetzt entschieden, ATHENA als strategische Ausbaumaßnahme mit fast 30 Millionen Euro zu fördern.

 „Die Entscheidung zeigt das starke Engagement der Helmholtz-Gemeinschaft, bahnbrechende neue Beschleunigertechnologien zur Lösung gesellschaftlicher Zukunftsaufgaben zu entwickeln und bereitzustellen“, sagt Helmut Dosch, der Vorsitzende des DESY-Direktoriums und Sprecher des Forschungsbereichs Materie in der Helmholtz-Gemeinschaft.

Zwei Leuchtturmprojekte

Gemeinsam wollen die Zentren zwei deutsche Leuchtturmprojekte der Beschleunigerforschung auf Grundlage innovativer plasmabasierter Teilchenbeschleuniger und hochmoderner Lasertechnologie aufbauen: bei DESY in Hamburg eine Elektronen- und am HZDR eine Hadronen-Beschleunigeranlage. An beiden Anlagen sollen verschiedene Einsatzmöglichkeiten entwickelt werden, die von einem kompakten Freie-Elektronen-Laser über neuartige medizinische Anwendungen bis hin zu neuen Experimenten in Kern- und Teilchenphysik reichen. Sobald die Nutzungsreife in einem Gebiet erreicht wird, könnten neue kompakte Nutzeranlagen in anderen Helmholtz-Zentren, aber auch in Universitäten und Krankenhäusern aufgebaut werden.

Beitrag aus dem HZB

Am HZB tragen zwei Arbeitsgruppen zu diesem Projekt bei: Die Abteilung Undulatoren von Johannes Bahrdt entwickelt und baut zwei neuartige Undulatoren: Der weltweit erste In-Vakuum-APPLE-Undulator wird am BESSY II eingesetzt werden. Der zweite Undulator, eine anspruchsvolle Weiterentwicklung des Prototypen, wird am Freie-Elektronen-Laser am Hamburger Leuchtturmprojekt eingebaut werden. Die Fachgruppe „Erzeugung hochbrillanter Elektronenstrahlen“ von Thorsten Kamps arbeitet an einer laserbasierten Strahldiagnoseeinrichtung. Mit dieser sollen  die Eigenschaften der erzeugten Elektronenstrahlen charakterisiert werden.

„Die Förderung des von DESY koordinierten ATHENA-Projekts ist ein wichtiger Meilenstein im 2011 gegründeten ARD-Programm (Accelerator Research and Development) der Helmholtz-Gemeinschaft“, erklärt ARD-Initiator und DESY-Beschleunigerdirektor Reinhard Brinkmann. Andreas Jankowiak, Leiter des Instituts für Beschleunigerphysik am HZB und Sprecher des ARD-Programms, ergänzt: „Die Kompetenz aller Helmholtz-Beschleunigerzentren auf diese Weise zu bündeln verspricht bahnbrechende Entwicklungen und neue Anwendungen für ultrakompakte Teilchenbeschleuniger.“

Stärkung der Wettbewerbsfähigkeit in Deutschland und Europa

„Die Erforschung neuartiger Plasmabeschleuniger findet in einem Umfeld starker internationaler Wettbewerber aus den USA und Asien statt. ATHENA stärkt die traditionell führende Rolle der deutschen Beschleunigerforschung und unterstützt die internationale Wettbewerbsfähigkeit des deutschen Wissenschaftsstandortes“, sind sich Ralph Aßmann, ATHENA-Projektkoordinator und Leitender Wissenschaftler bei DESY, und Ulrich Schramm, Leiter der Laser-Teilchenbeschleunigung am HZDR, sicher.

Die ATHENA-Arbeiten sind durch die EU-geförderte Designstudie EuPRAXIA mit ihren 40 Partnerinstituten eng in die europäische Forschungslandschaft eingebettet. Damit hat das deutsche Spitzenforschungsprojekt ATHENA von Beginn an auch eine klare europäische Ausrichtung.

Die Presseinfo aus dem DESY finden Sie hier

 

DESY/HZB

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.