Helmholtz Association supports ATHENA with 29.99 mio. euro grant

ATHENA (“Accelerator Technology HElmholtz iNfrAstructure”) is a new research and development platform focusing on accelerator technologies and drawing on the resources of all six Helmholtz accelerator institutions (DESY, Jülich Research Centre, Helmholtz Centre Berlin, Helmholtz Centre Dresden-Rossendorf HZDR, KIT and GSI with the Helmholtz Institute of Jena). The Helmholtz Association has now decided to pay almost 30 million euros towards ATHENA as a strategic development project.

“This decision demonstrates the Helmholtz Association’s strong commitment to developing and supplying ground-breaking new accelerator technologies for solving the future challenges faced by society,” says Helmut Dosch, who is the Chairman of DESY’s Board of Directors and also the spokesperson for the Helmholtz Association’s research division Matter.

Two flagship projects in accelerator research

Together, these centres want to set up two German flagship projects in accelerator research based on innovative plasma-based particle accelerators and ultramodern laser technology: an electron accelerator at DESY in Hamburg and a hadron accelerator at HZDR. At both facilities, a range of different fields of application are to be developed, ranging from a compact free-electron laser, through novel medical uses to new applications in nuclear and particle physics. As soon as they have reached the necessary level of maturity to be put to practical use in a particular area, new compact devices could be built for use in other Helmholtz centres, as well as in universities and hospitals.

HZB contributions:

Two working groups at the HZB contribute to this project: Johannes Bahrdt's Undulators Department develops and builds two novel undulators: The world's first in-vacuum apple undulator will be used at BESSY II. The second undulator, a sophisticated refined development of the prototype, will be installed at the free-electron laser in Hamburg's lighthouse project. Thorsten Kamps' group "Generation of highly brilliant electron beams" is working on a laser-based beam diagnostic device. The aim is to characterize the properties of the electron beams generated.

“The funding of the ATHENA project is an important milestone in the ARD (Accelerator Research and Development) programme, which was set up by the Helmholtz Association in 2011,” explains Reinhard Brinkmann, one of the initiators of ARD and the head of the accelerator department at DESY. Andreas Jankowiak, head of the Institute of Accelerator Physics at the HZB and spokesman for the ARD programme, adds: "Combining the competence of all Helmholtz Accelerator Centres in this way promises groundbreaking developments and new applications for ultra-compact particle accelerators.

Strengthening competitiveness in Germany and Europe

Ralph Aßmann, the project coordinator of ATHENA and lead scientists at DESY, and Ulrich Schramm, head of laser particle acceleration at HZDR, agree that “The study of new types of plasma accelerators takes place in the context of strong international competition from the US and Asia. ATHENA is consolidating the traditional leading role of Germany’s accelerator research and supporting Germany’s international competitiveness as a place for doing science.”

The work on ATHENA is closely embedded in the wider context of European research through the EU-sponsored design study EuPRAXIA, with its 40 partner institutes, which is also coordinated by DESY. Hence the top German research project ATHENA has had a clear European perspective and orientation right from the start.

Press release by DESY

 

DESY/HZB

  • Copy link

You might also be interested in

  • BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
    Science Highlight
    21.10.2025
    BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
    For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties of a material through a highly refined experimental process. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.
  • Did marine life in the palaeocene use a compass?
    Science Highlight
    20.10.2025
    Did marine life in the palaeocene use a compass?
    Some ancient marine organisms produced mysterious magnetic particles of unusually large size, which can now be found as fossils in marine sediments. An international team has succeeded in mapping the magnetic domains on one of such ‘giant magnetofossils’ using a sophisticated method at the Diamond X-ray source. Their analysis shows that these particles could have allowed these organisms to sense tiny variations in both the direction and intensity of the Earth’s magnetic field, enabling them to geolocate themselves and navigate across the ocean. The method offers a powerful tool for magnetically testing whether putative biological iron oxide particles in Mars samples have a biogenic origin.
  • What vibrating molecules might reveal about cell biology
    Science Highlight
    16.10.2025
    What vibrating molecules might reveal about cell biology
    Infrared vibrational spectroscopy at BESSY II can be used to create high-resolution maps of molecules inside live cells and cell organelles in native aqueous environment, according to a new study by a team from HZB and Humboldt University in Berlin. Nano-IR spectroscopy with s-SNOM at the IRIS beamline is now suitable for examining tiny biological samples in liquid medium in the nanometre range and generating infrared images of molecular vibrations with nanometre resolution. It is even possible to obtain 3D information. To test the method, the team grew fibroblasts on a highly transparent SiC membrane and examined them in vivo. This method will provide new insights into cell biology.