Zwei berühmte Gemälde mit Neutronen untersucht: "St. Sebasian" von George de La Tour und "Girl with a Platter of Fruits" von Tiziano Vecellio

In Kooperation mit der Gemäldegalerie Berlin und der Stiftung Preußischer Schlösser und Gärten Berlin-Brandenburg sind am Forschungsreaktor BER II zwei Gemälde untersucht worden. Seit vielen Jahren wird ein spezielles Neutroneninstrument zur zerstörungsfreien Analyse von Gemälden mittels Neutronenautoradiographie genutzt.

Berichte zu den untersuchten Gemälden

  • Autoradiographs from the Paintings "St. Sebasian" by George de La Tour (PDF-Datei, 677KB)
  • Autoradiograph from "Girl with a Platter of Fruits" by Tiziano Vecellio (PDF-Datei, 633KB)

Gemäldeforschung mit Neutronen

Neutronen haben eine große Eindringtiefe. Die Atomkerne der Farbpigmente in den Gemälden werden durch die Bestrahlung mit Neutronen aktiviert. Die induzierte Beta-Strahlung schwärzt Röntgenfilme oder Image-Plates, deren Information digital weiterverarbeitet werden kann. So erhält man in Abhängigkeit der Halbwertszeiten der entstandenen Isotope verschiedene Aufnahmen des Gemäldes, bzw. Aufnahmen von unter der sichtbaren Oberfläche liegenden Schichten und damit eine Information über die Verteilung der Pigmente. Aus der Energieanalyse der radioaktiven Gamma-Strahlung mittels eines Ge-Detektors erhält man die elementanalytische Zusammensetzung der Farbpigmente. Mit dieser Methode kann man konzeptionelle Änderungen und Korrekturen (sog. "Pentimente") des Malers visualisieren. In einigen wenigen Fällen lassen sich auch Aussagen über die Authentizität eines Bildes machen. Kunsthistoriker und Restauratoren erhalten zudem wertvolle Informationen über die Bildgenese, die Maltechnik des Künstlers, den Zustand eines Gemäldes und die Möglichkeiten der Restaurierung.

Neutroneninstrument: Irradiation Device B8

Das Instrument erlaubt die Bestrahlung und Aktivierung von Folien, Materialproben, geologischen Proben sowie Kunstgegenständen mit kalten Neutronen und die anschließende Analyse mit Hilfe der Gamma-Spektroskopie und/oder Röntgenfilmen bzw. Imaging-Plate-Technik, (Neutronen-Autoradiographie und Neutronenaktivierungsanalyse). Seit vielen Jahren wird die Anlage hauptsächlich in der Gemäldeforschung zur zerstörungsfreien Analyse von Gemälden mittels Neutronenautoradiographie genutzt. Zu Beginn des Jahres 2000 wurde die Bestrahlungsanlage B8, organisatorisch und inhaltlich dem Berliner Zentrum für Neutronenstreuung (BENSC) angegliedert. (Instrument B8 bei BENSC)

  • Link kopieren

Das könnte Sie auch interessieren

  • Sasol und HZB vertiefen Zusammenarbeit mit Fokus auf Digitalisierung
    Nachricht
    08.10.2025
    Sasol und HZB vertiefen Zusammenarbeit mit Fokus auf Digitalisierung
    Sasol Research & Technology und das Helmholtz-Zentrum Berlin (HZB) erweitern ihre Partnerschaft auf den Bereich der Digitalisierung. Dabei bauen sie auf gemeinsamen Anstrengungen im Rahmen des CARE-O-SENE-Projekts und einer Anfang 2025 ins Leben gerufenen Industrial Fellowship auf. Die neue Initiative ist ein Schritt vorwärts bei der Nutzung digitaler Technologien, um Innovation bei Katalysatoren zu beschleunigen und die  wissenschaftliche Zusammenarbeit zu vertiefen.
  • Verleihung des Technologietransfer-Preises 2025
    Nachricht
    07.10.2025
    Verleihung des Technologietransfer-Preises 2025
    Die Verleihung des Technologietransfer-Preises wird am 13. Oktober um 14 Uhr im Hörsaal des BESSY-II-Gebäudes in Adlershof stattfinden.
  • Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Science Highlight
    01.10.2025
    Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Forschende haben erstmals die tatsächlichen Eigenschaften einzelner MXene-Flocken gemessen – einem spannenden neuen Nanomaterial mit Potenzial für bessere Batterien, flexible Elektronik und Geräte für saubere Energie. Mithilfe einer neuartigen lichtbasierten Technik – der spektroskopischen Mikroellipsometrie – haben sie herausgefunden, wie sich MXene auf der Ebene einzelner Flocken verhalten und dabei Veränderungen in der Leitfähigkeit und der optischen Reaktion aufgedeckt, die zuvor bei der Untersuchung gestapelter Schichten verborgen geblieben waren. Dieser Durchbruch liefert grundlegendes Wissen und Werkzeuge für die Entwicklung intelligenterer und effizienterer Technologien auf Basis von MXenen.